Skip to main content

Extraction and Solubilization of Proteins for Proteomic Studies

  • Protocol
The Proteomics Protocols Handbook

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

For any proteomic study involving various control and experimental specimens, several factors need to be in place. A critical one is the extraction and solubilization of all components, regardless of whether a chromatographic (1,2) or two-dimensional (2-D) gel electrophoretic fractionation (36) is performed prior to analysis of proteins of interest by mass spectrometry of protein digests. All proteins must not only be extracted, but they must also be completely soluble, free from interacting partners (such as protein-RNA/DNA and protein-protein interactions, metabolites, and so on), and, in the case of 2-D gel electrophoresis, they must remain soluble as they approach their isoelectric points. The solubilization process should extract all classes of proteins reproducibly, such that statistically significant quantitative data can be obtained and correlated with experimental perturbations and the resulting biological responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., and Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotech. 17, 994–999.

    Article  CAS  Google Scholar 

  2. Patterson, S. D. and Aebersold, R. H. (2003) Proteomics: The first decade and beyond. Nature Genetics 33, 311–323.

    Article  PubMed  CAS  Google Scholar 

  3. Garrels, J. (1979) Two-dimensional gel electrophoresis and computer analysis of proteins synthesized by clonal cell lines. J. Biol. Chem. 254, 7961–7977.

    PubMed  CAS  Google Scholar 

  4. Gorg, A., Obermaier, C., Boguth, G., et al. (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21, 1037–1053.

    Article  PubMed  CAS  Google Scholar 

  5. Rabilloud, T. (2002) Two-dimensional gel electrophoresis in proteomics: Old, old fash-ioned, but it still climbs up the mountains. Proteomics 2, 3–10.

    Article  PubMed  CAS  Google Scholar 

  6. Lefkowits, I., Kettman, J. R., and Frey, J. R. (2000) Global analysis of gene expression in cells of the immune system. I. Analytical limitations in obtaining information on polypep-tides in two-dimensional gel spots. Electrophoresis 21, 2688–2693.

    Article  Google Scholar 

  7. Herbert, B. (1999) Advances in protein solubilization for two-dimensional electrophore-sis. Electrophoresis 20, 660–663.

    Article  PubMed  CAS  Google Scholar 

  8. Molloy, M.P. (2000) Two-dimensional electrophoresis on membrane proteins using immobilized pH gradients. Anal. Biochem. 280, 1–10.

    Article  PubMed  CAS  Google Scholar 

  9. Rabilloud, T. (1996) Solubilization of proteins for electrophoretic analyses. Electrophoresis 17, 813–829.

    Article  PubMed  CAS  Google Scholar 

  10. Rabilloud, T. (1999) Solubilization of proteins in 2-D electrophoresis: An outline. Methods Mol. Biol. 112 2-D Proteome Analysis Protocols (Ed. Link, A. J.), 9–19.

    Google Scholar 

  11. Rabilloud, T., Adessi, C., Girauddel, A., and Lunardi, J. (1997) Improvement of the solu-bilization of proteins in two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 18, 307–316.

    Article  PubMed  CAS  Google Scholar 

  12. Kersten, B., Burkle, L., Kuhn, E. J., et al. (2002) Large-scale plant proteomics. Plant Mol. Biol. 48, 133–141.

    Article  PubMed  CAS  Google Scholar 

  13. Rabilloud, T., Blisnick, T., Heller, M., et al. (1999) Analysis of membrane proteins by two-dimensional electrophoresis: Comparison of the proteins extracted from normal or Plasmodium falciparum infected erythrocyte ghosts. Electrophoresis 20, 3603–3610.

    Article  PubMed  CAS  Google Scholar 

  14. Chevallet, M., Santoni, V., Poinas, A., et al. (1998) New zwitterionic detergents improve the analysis of membrane proteins by two-dimensional electrophoresis. Electrophoresis 19, 1901–1909.

    Article  PubMed  CAS  Google Scholar 

  15. Santoni, V., Molloy, M., and Rabilloud, T. (2000) Membrane proteins and proteomics: un amour impossible? Electrophoresis 21, 1054–1070.

    Article  PubMed  CAS  Google Scholar 

  16. Tastet, C., Charmont, S., Chevallet, M., Luche, S., and Rabilloud, T. (2003) Structure-efficiency relationships of zwitterionic detergents as protein solubilizers in two-dimen-sional electrophoresis. Proteomics 3, 111–121.

    Article  PubMed  CAS  Google Scholar 

  17. Leimgruber, R. M., Malone, J. P., Radabaugh, M. R., LaPorte, M. L., Violand, B. N., and Monahan, J. (2002) Development of improved cell lysis, solubilization and imaging approaches for proteomic analyses. Proteomics 2, 135–144.

    Article  PubMed  CAS  Google Scholar 

  18. Molloy, M. P. and VanBogelen, R. A. (2003) Exploring the proteome: Reviving emphasis on quantitative profiling. Proteomics 3, 1833–1834.

    Article  PubMed  Google Scholar 

  19. Molloy, M. P., Brzezinski, E. E., Hang, J., McDowell, M.T., and VanBogelen, R. A. (2003) Overcoming technical variation and biological variation in quantitative proteomics. Proteomics 3, 1912–1919.

    Article  PubMed  CAS  Google Scholar 

  20. Hille, J. M., Freed, A. L., and Watzig, H. (2001) Possibilities to improve automation, speed and precision of proteome analysis: A comparison of two-dimensional electrophore-sis and alternatives. Electrophoresis 22, 4035–4052.

    Article  PubMed  CAS  Google Scholar 

  21. Somiari, R. I., Sullivan, A., Russell, S., et al. (2003) High-throughput proteomic analysis of human infiltrating ductal carcinoma of breast. Proteomics 3, 1863–1873.

    Article  PubMed  CAS  Google Scholar 

  22. Decker, E. D., Zhang, Y., Cocklin, R. R., Witzmann, F. A., and Wang, F. (2003) Proteomic analysis of differential protein expression induced by ultraviolet light radiation in HeLa cells. Proteomics 3, 2019–2027.

    Article  PubMed  CAS  Google Scholar 

  23. Thome-Kromer, Bonk, I., Klatt, M., et al. (2003) Toward the identification of liver toxicity markers: A proteome study in human cell culture and rats. Proteomics 3, 1835–1862.

    Article  Google Scholar 

  24. Jang, J. H. and Hanash, S. (2003) Profiling of the cell surface proteome. Proteomics 3, 1947–1954.

    Article  PubMed  CAS  Google Scholar 

  25. Terry, D. E. and Desiderio, D. M. (2003) Betweengel reproducibility of the human cere-brospinal fluid proteome. Proteomics 3, 1962–1979.

    Article  PubMed  CAS  Google Scholar 

  26. Swatton, J. E., Prabakaran, S., Karp, N. A., Lilley, K. S., and Bahn, S. (2004) Protein Profiling of human post-mortem brain using 2-dimensional fluorescence difference gel electrophoresis (2-D DIGE). Mol. Psychiatry 9, 128–143.

    Article  PubMed  CAS  Google Scholar 

  27. Tonge, R., Shaw, J., Middleton, et al. And Davison (2001) Validation and develop-ment of fluorescence two-dimensional differential gel electrophoresis proteomics tech-nology. Proteomics 1, 377–396.

    Article  PubMed  CAS  Google Scholar 

  28. Patton, W. F. (2002) Detection technologies in proteome analysis. J. Chromatog. B 771, 3–31.

    Article  CAS  Google Scholar 

  29. Choi, B.-K., Cho, Y.-M., Bae, S.-H., Zoubaulis, and Paik, Y.-K. (2003) single-step perfusion chromatography with a throughput potential for enhanced peptide detection by matrix-assisted laser desorption/ionization-mass spectrometry. Proteomics 3,1955–1961.

    Article  PubMed  CAS  Google Scholar 

  30. Raman, Cheung, A., and Marten, M. R. (2002) Quantitative comparison and evalua-tion of two commercially available, two-dimensional electrophoresis image analysis soft-ware packages, Z3 and Melanie. Electrophoresis 23, 2194–2202.

    Article  Google Scholar 

  31. Rubinfeld, A., Keren-Lehrer, T., Hadas, G., and Smilansky, Z. (2003) Hierarchical analysis of large-scale two-dimensional gel electrophoresis experiments. Proteomics 3,1930–1935.

    Article  PubMed  CAS  Google Scholar 

  32. Rosengren, A. T., Salmi, J. M., Aittokallio, T., et al. (2003) Comparison of PDQuest and Progenesis software packages in the analysis of two-dimensional electrophoresis images. Proteomics 3, 1936–1946.

    Article  PubMed  CAS  Google Scholar 

  33. Anderson, N. L. and Anderson, N. G. (2002) The human plasma proteome: History, char-acter and diagnostic prospects. Mol. Cell. Proteomics 1, 845–867.

    Article  PubMed  CAS  Google Scholar 

  34. Lopez, M., Lopez, M. F., Kristal, B. S., et al. (2000) High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation. Electrophoresis 21, 3427–3440.

    Article  PubMed  CAS  Google Scholar 

  35. Corthals, G. L., Molloy, M. P., Herbert, B. R., Williams, K. L., and Gooley, A. A. (1997) Prefractionation of protein samples prior to two-dimensional electrophoresis. Electro-phoresis 18,317–324.

    Article  CAS  Google Scholar 

  36. Hamler, R., Zhu, K., Buchanan, N. S., et al. (2004) A two-dimensional liquid-phase sepa-ration method coupled with mass spectrometry for proteomic studies of breast cancer and biomarker identification. Proteomics 4, 562–577.

    Article  PubMed  CAS  Google Scholar 

  37. Klose, J. (1999) Fractionated extraction of total tissue proteins from mouse and human for 2-D electrophoresis. Methods Enzymol. 112, 67–85.

    CAS  Google Scholar 

  38. Klose, J. (1999) Large-gel 2-D electrophoresis. In:: Link, A. (ed.), 2-D Proteome Analysis Protocols. Humana, Totowa, NJ: 147–172.

    Google Scholar 

  39. Rothemund, D. L., Locke, V. L., Liew, A., Thomas, T. M., Wasinger, V., and Rylatt, D. B. (2003) Depletion of the highly abundant protein albumin from human plasma using the Gradiflow. Proteomics 3, 279–287.

    Article  PubMed  CAS  Google Scholar 

  40. Wang, W., Scali, M., Vignani, R., et al. (2003) Protein extraction for two-dimensional electrophoresis from olive leaf, a plant tissue containing high levels of interfering com-pounds. Electrophoresis 24, 2369–2375.

    Article  PubMed  CAS  Google Scholar 

  41. Molloy, M. P., Herbert, Walsh, J., et al. (1998) Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis. Elec-trophoresis 19, 837–844.

    Article  CAS  Google Scholar 

  42. Molloy, M., Herbert, R., Williams, K. L., and Gooley, A. A. (1999) Extraction of Escherichia coli proteins with organic solvents prior to two-dimensional electrophoresis. Electrophoresis 20, 701–704.

    Article  PubMed  CAS  Google Scholar 

  43. Pieper R., Su, Q., Gatlin, L., Huang, S.-T., Anderson, N. L., and Steiner, S. (2003) Multi-component immunoaffinity subtraction chromatography: an innovative step towards a comprehensive survey of the human plasma proteome. Proteomics 3,422–432.

    Article  PubMed  CAS  Google Scholar 

  44. Pieper, R., Gatlin, L., Makusky, A. J., et al. (2003) The human serum proteome: dis-play of nearly 3700 chromatographically separated spots on two-dimensional electro-phoresis gels and identification of 325 distinct proteins. Proteomics 3, 1345–1364.

    Article  PubMed  CAS  Google Scholar 

  45. Wang, Y. Y., Cheng, P., and Chan, D. W. (2003) A simple affinity spin tube filter method for removing high-abundant common proteins or enriching low-abundant biomarkers for serum proteomic analysis. Proteomics 3, 243–248.

    Article  PubMed  CAS  Google Scholar 

  46. Ahmed, N., Barker, G., Oliva, k., et al. (2003) An approach to remove albumin for the proteomic analysis of low abundance biomarkers in human serum. Proteomics 3, 1980–1987.

    Article  PubMed  CAS  Google Scholar 

  47. Haney, P. J., Draveling, C., Durski W., Romanowich, K., and Qoronfleh, M. W. (2003) SwellGel: a sample preparation affinity chromatography technology for high throughput proteomic applications. Protein Exp. Purif. 28, 270–279.

    Article  CAS  Google Scholar 

  48. Gygi, S. P., Han, D. K., Gingras, A. C., Sonenberg, N., and Aebersold, R. (1999) Protein analysis by mass spectrometry and sequence database searching: tools for cancer research in the post-genomic era. Electrophoresis 20, 310–319.

    Article  PubMed  CAS  Google Scholar 

  49. Smolka, M., Zhou, H., and Aebersold, R. (2002) Quantitative protein profiling using two-dimensional gel electrophoresis, isotope-coded affinity tag labeling and mass spectrom-etry. Mol. Cell. Proteomics 1, 19–29.

    Article  PubMed  CAS  Google Scholar 

  50. Liotta, L. A., Ferrarri, M., and Petricoin, E. (2003) Written in blood. Nature 425, 905.

    Google Scholar 

  51. Mehta, A. I., Ross, S., Lowenthal, M. S., et al. (2003–2004) Biomarker amplification by serum carrier protein binding. Disease Markers 19, 1–10.

    Google Scholar 

  52. Berman, D. M., Shih, I.-M., Burke, L. A., et al. (2004) Profiling the activity of G proteins in patient-derived tissues by rapid affinity-capture of signal transduction proteins (GRASP). Proteomics 4, 812–818.

    Article  PubMed  CAS  Google Scholar 

  53. Rabilloud, T., Adessi, C., Giraudel, A., and Lunardi, J. (1997) Improvement of the solubilization of proteins in two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 18, 307–316.

    Article  PubMed  CAS  Google Scholar 

  54. Rabilloud, T. (1998) Use of thiourea to increase the solubility of membrane proteins in two-dimensional electrophoresis. Electrophoresis 19, 758–760.

    Article  PubMed  CAS  Google Scholar 

  55. Luche, S., Santoni, V., and Rabilloud, T. (2003) Evaluation of nonionic and zwitterionic detergents as membrane protein solubilizers in two-dimensional electrophoresis. Proteomics 3, 249–253.

    Article  PubMed  CAS  Google Scholar 

  56. Lanne, Potthast, F., Hogland, A., et al. (2001) Thiourea enhances mapping of the proteome from murine white adipose tissue. Proteomics 1, 819-828.

    Google Scholar 

  57. Giavalalisco, P., Nordhoff, E., Lehrach, H., Gobom, J., and Klose, J. (2003) Extraction of proteins from plant tissues for two-dimensional electrophoresis analysis. Electrophoresis 24, 207–216.

    Article  Google Scholar 

  58. Henningsen, R., Gale, B. L., Straub, K. M., and DeNagel, D. (2002) Application of zwitterionic detergents to the solubilization of integral membrane proteins for two-dimensional gel electrophoresis and mass spectrometry. Proteomics 2, 1479–1488.

    Article  PubMed  CAS  Google Scholar 

  59. Gall, A.-L., Ruff, M., and Moras, M. (2002) The dual role of CHAPS in the crystallization of stromelysin-3 catalytic domain. Acta Cryst. D59, 603–606.

    Google Scholar 

  60. Schuck, S., Honsho, M., Ekroos, Shevchenko, A., and Simons, K. (2003) Resistance of cell membranes to different detergents. Proc. Natl. Acad. Sci. USA 100, 5795–5800.

    Article  PubMed  CAS  Google Scholar 

  61. Umbreit, J. N. and Strominger, J. L. (1973) Relation of detergent HLB number to solubi-lization and stabilization of D-alanine carboxypeptidase from Bacillus subtilis membranes. Proc. Natl. Acad. Sci. USA 70, 2997–3001.

    Article  PubMed  CAS  Google Scholar 

  62. Duval-Terrie, C., Cosette, P., Molle, G., Muller, G., and De, E. (2003) Amphiphilic biopolymers (amphibiopols) as new surfactants for membrane protein solubilization. Protein Science 12, 681–689.

    Article  PubMed  CAS  Google Scholar 

  63. Stevens, S. M., Jr., Zharikova, A. D., and Prokai, L. (2003) Proteomic analysis of the synaptic plasma membrane fraction isolated form rat forebrain. Mol. Brain Res. 117, 116–128.

    Article  PubMed  CAS  Google Scholar 

  64. Seigneurin-Berny, D., Rolland N., Garin, J., and Joyard, J. (1999) Differential extraction of hydrophobic proteins from chloroplast envelope membranes: a subcellular-specific proteomic approach to identify rare intrinsic membrane proteins. Plant J. 19, 217–228.

    Article  PubMed  CAS  Google Scholar 

  65. Santoni, V., Kiefer, S., Desclaux, D., Masson, F., and Rabilloud, T. (2000) Membrane proteomics: Use of additive main effects with multiplicative interaction model to classify plasma membrane proteins according to their solubility and electrophoretic properties. Electrophoresis 21, 3329–3344.

    Article  PubMed  CAS  Google Scholar 

  66. Molloy, M., Phadke, N. D., Maddock, J. R., and Andrews, P. (2001) Two-dimensional electrophoresis and peptide mass fingerprinting of bacterial outer membrane proteins. Electrophoresis 22, 1686–1696.

    Article  PubMed  CAS  Google Scholar 

  67. Hauser, H. (2000) Short-chain phospholipids as detergents. Biochim. Biophys. Acta 1508, 164–181.

    Article  PubMed  CAS  Google Scholar 

  68. Le Maire, M., Champeil, P., and Moller, J. V. (2000) Interaction of membrane proteins and lipids with solubilizing detergents. Biochim. Biophys. Acta 1508, 86–111.

    Article  PubMed  Google Scholar 

  69. Blonder J., Goshe, M. Moore, R. J., et al. (2002) Enrichment of integral membrane proteins for proteomic analyses using liquid chromatography-tandem mass spectrometry. J. Proteome Res. 1, 351–360.

    Article  PubMed  CAS  Google Scholar 

  70. Qoronfleh, M. W., Benton, Ignacio, R., and Kaboord, B. (2003) Selective enrichment of membrane proteins by partition phase separation for proteomic studies. J. Biomed. Biotechnol. 4, 249–255.

    Article  Google Scholar 

  71. Dry, I. B. and Robinson, S. P. (1994) Molecular cloning and characterization of grape berry polyphenol oxidase. Plant Mol. Biol. 26, 495–502.

    Article  PubMed  CAS  Google Scholar 

  72. Baxter, N. J., Lilley, T. H., Haslam, E., and Williamson, M. P.(1997) Multiple interac-tions between polyphenols and a salivary proline-rich protein repeat result in complexation and precipitation. Biochemistry 36, 5566–5577.

    Article  PubMed  CAS  Google Scholar 

  73. Veljovic-Jovanovic, S., Noctor, G., and Foyer, H. (2003) Are leaf hydrogen peroxide concentrations commonly overestimated? The potential influence of artefactual interference by tissue phenolics and ascorbate. Plant Physiol. Biochem. 40, 501–507.

    Article  Google Scholar 

  74. Molina, M. C., Crespo, A., Vicente, C., and Elix, J. A. (2003) Differences in the compo-sition of phenolics and fatty acids of cultured mycobiont and thallus of Physconia distorta. Plant Physiol. Biochem. 41, 175–180.

    Article  CAS  Google Scholar 

  75. Davidsen, N. B. (1995) Two-dimensional electrophoresis of acidic proteins isolated from ozone-stressed Norway spruce needles (Picea abies L. Karst): Separation method and image processing. Electrophoresis 16, 1305–1311.

    Article  PubMed  CAS  Google Scholar 

  76. Koonjul, P. K., Brandt, W. F., Farrant, J. M., and Lindsey, G. G. (1999) Inclusion of polyvinylpyrrolidone in the polymerase chain reaction reverses the inhibitory effects of polyphenolic contamination of RNA. Nucleic Acids Res. 27, 915–916.

    Article  PubMed  CAS  Google Scholar 

  77. Hoving, S., Gerrits, B, Voshol, H., Muller, D., Roberts, R. C., and van Oostrum, J. (2002) Preparative two-dimensional gel electrophoresis at alkaline pH using narrow range immobilized pH gradients. Proteomics 2, 127–134.

    Google Scholar 

  78. Herbert, R., Molloy, M. P., Gooley, A. A., Walsh B. J., Bryson, W. G., and Willaims, K. L. (1998) Improved protein solubility in two-dimensional electrophoresis using tributyl phosphine as reducing agent. Electrophoresis 19, 845–851.

    Article  PubMed  CAS  Google Scholar 

  79. Luche, S., Diemer, H., Tastet, C. et al. (2004) About thiol derivatization and resolution of basic proteins in two-dimensional electrophoresis. Proteomics 4, 551–561.

    Article  PubMed  CAS  Google Scholar 

  80. Santoni, V., Rabilloud, T., Doumas, P., et al. Towards the recovery of hydrophobic pro-teins on two-dimensional gels. Electrophoresis 20, 705–711.

    Google Scholar 

  81. Santoni, V., Doumas, P., Rouquie, D., Mansion, M., Rabilloud, T., and Rossignol, M. (1999) Large Scale characterization of plant plasma membrane proteins. Biochimie 81, 655–661.

    Article  PubMed  CAS  Google Scholar 

  82. Kamo, M., Kawakami, T., Miyatake, N., and Tsugita, A. (1995) Separation and character-ization of Arabidopsis thaliana proteins by two-dimensional gel electrophoresis. Electrophoresis 16, 423–430.

    Article  PubMed  CAS  Google Scholar 

  83. Rouquie, D., Peltier, J. Marquis-Mansion, M., Tournaire, Doumas, P., and Rossingnol, M. (1997) Construction of a directory of tobacco plasma membrane proteins by combined two-dimensional gel electrophoresis and protein sequencing. Electrophoresis 18, 654–660.

    Article  PubMed  CAS  Google Scholar 

  84. Tsugita, A. and Kamo, M. (1999) N-terminal amino acid sequencing of 2-DE spots. Methods Enzymol. 112, 95–97.

    CAS  Google Scholar 

  85. Porubleva, L., Van der Veldin, K., Kothari, S., Livier, D. J., and Chitnis, P. R. (2001) The proteome of maize leaves: use of gene sequences and expressed sequence tag data for identification of proteins with peptide mass fingerprints. Electrophoresis 22, 1724–1738.

    Article  PubMed  CAS  Google Scholar 

  86. Gegenheimer, P. (1990) Preparation of extracts from plants. Methods Enzymol. 182,174–193.

    Article  PubMed  CAS  Google Scholar 

  87. Bak-Jensen, K. S., Laugesen, S., Roepstorff, P., and Svensson, B. (2004) Two-dimensional gel electrophoresis pattern (pH 6-11) and identification of water-soluble barley seed and malt proteins by mass spectrometry. Proteomics 4, 728–742.

    Article  PubMed  CAS  Google Scholar 

  88. Damerval, C., de Vienne, D., Zivy, M., and Thiellement, H. (1986) Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. Electrophoresis 7, 52–54.

    Article  CAS  Google Scholar 

  89. Alban, A., David, S. O., Bjorkesten, L., et al. (2003) A novel experimental design for comparative two-dimensional gel analysis: Two-dimensional gel electrophoresis incorporating a pooled internal standard. Proteomics 3, 36–44.

    Article  PubMed  CAS  Google Scholar 

  90. Yan, J. X., Devenish, A. T., Wait, R., Stone, T., Lewis, S., and Fowler, S. (2002) Fluorescence two-dimensional difference gel electrophoresis and mass spectrometry based proteomic analysis of Escherichia coli. Proteomics 2, 1682–1698.

    CAS  Google Scholar 

  91. Ruepp, S. U., Tonge, R. P., Shaw, J., Wallis, N., and Pognan, F. (2002) Genomics and proteomics analysis of acetoaminophen toxicity in mouse liver. Toxicological Sciences 65, 135–150.

    Article  PubMed  CAS  Google Scholar 

  92. Kleno, T. G., Leonardsen, L. R., Kjeldal, H. O., Laursen, S. M., Jensen, O. N., and Baunsgaard, D. (2004)Mechanisms of hydrazine toxicity in rat liver investigated by proteomics and multivariate data analysis. Proteomics B 4, 868–880.

    Article  CAS  Google Scholar 

  93. Von Eggling, F., Gawriljuk, A., Fiedler, W., et al. (2001) Fluorescent dual colour 2D-protein gel electrophoresis for rapid detection of differences in protein pattern with stan-dard image analysis software. Int. J. Mol. Med. 8, 373–377.

    Google Scholar 

  94. Tyagarajan, K, Pretzer, E., and Wiktorowicz, J. E. (2003) Thiolreactive dyes for fluorescence labeling of proteomic samples. Electrophoresis 24, 2348–2358.

    Article  PubMed  CAS  Google Scholar 

  95. Rekhter, M. D. and Chen, J. (2001) Molecular analysis of complex tissues is facilitated by laser capture microdissection: critical role of upstream processing. Cell. Biochem. Biophys. 35, 103–113.

    Article  PubMed  CAS  Google Scholar 

  96. Banks, R. E., Dunn, M. J., Forbes, M. A., et al. (1999) The potential use of laser capture microdissection to selectively obtain distinct populations of cells for proteomic analysis-preliminary findings. Electrophoresis 20, 689–700.

    Article  PubMed  CAS  Google Scholar 

  97. Craven, R. A. and Banks, R. E. (2001) Laser capture microdissection and proteomics: possibilities and limitation. Proteomics 1, 1200–1204.

    Article  PubMed  CAS  Google Scholar 

  98. Jain, K. K., (2002) Recent advances in oncoproteomics. Curr. Opin. Mol. Thr. 4, 203–209.

    CAS  Google Scholar 

  99. Ornstein, D. K., Gillespie, J. W., Paweletz, P., et al. (2000) Proteomic analysis of laser capture microdissected human prostate cancer and in vivo prostrate cell lines. Electrophoresis 21, 2235–2242.

    Article  PubMed  CAS  Google Scholar 

  100. Wu, S.-L., Hancock, W. S., Goodrich, G. G., and Kunitake, S. T. (2003) An approach to the proteomic analysis of a breast cancer cell line (SKBR-3). Proteomics 3, 1037–1046.

    Article  PubMed  CAS  Google Scholar 

  101. Mouledous, L., Hunt, S., Harcourt, R., Harry, J., Williams, K. L., and Gutstein, H. B. (2003) Navigated laser capture microdissection as an alternative to direct histological staining for proteomic analysis of brain samples. Proteomics 3, 610–615.

    Article  PubMed  CAS  Google Scholar 

  102. Nakazono, M., Qiu, F., Borsuk, L. A., and Schnable, P. S. (2003) Laser-capture microdissection, a toll for the global analysis of gene expression in specific plant types: identification of genes expressed differentially in epidermal cells or vascular tissues of maize. Plant Cell 15, 583–596.

    Article  PubMed  CAS  Google Scholar 

  103. Malone, J. P., Radabaugh, M. R., Leimgruber, R. M., and Gerstenecker, G. S. (2001) Practical aspects of fluorescent staining for proteomic applications. Electrophoresis 22, 919–932.

    Article  PubMed  CAS  Google Scholar 

  104. Ruebelt, M. C., Lipp, M., Jany, Kl.-D., et al. (2003) Novel Foods-Safety Assessment: Method Development for Proteome Analysis of Arabidopsis Seeds Produced by Different Ecotypes (Accessions) and by Transgenic Events, Proceedings EURO FOOD CHEMXII, Strategies for Safe Food: Challenges in Organization and Communication, 24–26 September 2003, Brugge, Belgium, 189–192, ISBN number 90-804957-2-7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Leimgruber, R.M. (2005). Extraction and Solubilization of Proteins for Proteomic Studies. In: Walker, J.M. (eds) The Proteomics Protocols Handbook. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1385/1-59259-890-0:001

Download citation

  • DOI: https://doi.org/10.1385/1-59259-890-0:001

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-343-5

  • Online ISBN: 978-1-59259-890-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics