NEpHGE and pI Strip Proteomic 2-D Gel Electrophoretic Mapping of Lipid-Rich Membranes

  • Steven E. Pfeiffer
  • Yoshihide Yamaguchi
  • Cecilia B. Marta
  • Rashmi Bansal
  • Christopher M. Taylor

Abstract

Two-dimensional gel electrophoresis (2-DE) has become a powerful and widely used technique for proteomic analyses. However, proteins that are highly basic (pI 8–12), suggesting interactions with acidic sulfo- and phospholipids (1), can become compacted at the edge of the gel. Even if the isoelectric focusing (IEF) pH gradient is extended to high pH, slightly basic proteins enter the gel but are not well resolved, and the pH gradient is not sufficiently extended to include highly basic proteins. Therefore, the use of nonequilibrium pH gradient electrophoresis (NEpHGE) may be recommended (1, 2, 3) (see Note 1). In the first dimension, positively charged, basic proteins move toward the negative end of the gel while the pI gradient is forming. Because running the gel to equilibrium would result in many highly basic proteins exiting from the basic end of the gel (negative electrode), the electrophoresis must be stopped at a critical point (thus, “nonequilibrium”).

Keywords

Glycerol Microwave Urea Glycine Sedimentation 

References

  1. 1.
    Yamaguchi, Y. and Pfeiffer S. E. (1999) Highly basic myelin and oligodendrocyte proteins analyzed by NEPHGE two dimensional gel electorphoresis: Recognition of novel developmentally regulated proteins. J. Neurosci. Res. 56, 199–205.PubMedCrossRefGoogle Scholar
  2. 2.
    O’Farrell, P. Z., Goodman, H. M., and O’Farrell, P. H. (1977) High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell 12, 1133–1142.CrossRefGoogle Scholar
  3. 3.
    Celis, J. E., Ratz, G., Basse, B., Lauridsen, J. B., and Celis, A. High resolution two-dimensional gel electrophoresis of proteins: isoelectric focusing (IEF) and non equilibrium pH gradient electrophoresis (NEPHGE). Internet web site: http://proteomics.concer.dk/
  4. 4.
    Menon, K., Rasband, M. N., Taylor, C. M. Brophy P., Bansal, R., and Pfeiffer, S. E. (2003) The Myelin-Axolemmal Complex: biochemical dissection and the role of galactosphingolipids. J. Neurochem. 87, 995–1009.PubMedCrossRefGoogle Scholar
  5. 5.
    Taylor, C. M., Marta, C. B., Claycomb, R. J., et al. (2004) Proteomic mapping provides powerful insights into functional myelin biology. Proc. Natl. Acad. Sci. USA 101, 4643–4648.PubMedCrossRefGoogle Scholar
  6. 6.
    Marta, C. B., Taylor, C. M., Coetzee, T., et al. (2003) Antibody Crosslinking of myelin oligodendrocyte glycoprotein leads to its rapid repartitioning into detergent insoluble fractions and altered protein phosphorylation and cell morphology. J. Neurosci. 23, 5461–5471.PubMedGoogle Scholar
  7. 7.
    Marta, C. B., Taylor, C. M., Cheng S., Quarles, R., Bansal, R., and Pfeiffer, S. E. (2004) Myelin associated glycoprotein cross-linking triggers its partitioning into lipid rafts, specific signaling events and cytoskeletal rearrangements in oligodendrocytes. Neuron Glia Biology 1, 35–46.PubMedCrossRefGoogle Scholar
  8. 8.
    Taylor, C. M. and Pfeiffer, S. E. (2003) Enhanced resolution of glycosylphosphatidylinositol-anchored and transmembrane proteins from the lipid-rich myelin membrane by two-dimensional gel electrophoresis. Proteomics 3, 1303–1312.PubMedCrossRefGoogle Scholar
  9. 9.
    Mozdzanowski, J., Speicher, D., and Harper, S. (1995) Two-dimensional electrophoresis. In:Colligan, J. E., Dunn, B. M., Ploegh, H. L., Speicher, D. W., and Wingfield, P. T. (eds), Current Protocols in Protein Science. New York: John Wiley amp; Sons, pp. 10.4.1–30.Google Scholar
  10. 10.
    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 22, 680–685.CrossRefGoogle Scholar
  11. 11.
    Huber, L. A., Madison, D. L., Simons, K., and Pfeiffer, S. E. (1994) Myelin membrane biogenesis by oligodendrocytes: developmental regulation of low-molecular weight GTPbinding proteins. FEBS Lett. 347, 273–278.PubMedCrossRefGoogle Scholar
  12. 12.
    Kim, T., Fiedler, K., Madison, D. L., Krueger, W. H., and Pfeiffer, S. E. (1995) Cloning and characterization of MVP17: a developmentally regulated myelin protein in oligodendrocytes. J. Neurosci. Res. 42, 413–422.PubMedCrossRefGoogle Scholar
  13. 13.
    Taylor, C. M., Marta, C. B., Bansal, R., and Pfeiffer, S. E. (2004) The transport, assembly and function of myelin lipids. In: Lazzarini, R. (ed) Myelin Biology and Disorders, Vol. I, New York: Academic Press, pp. 57–88.CrossRefGoogle Scholar
  14. 14.
    Schafer, D. P., Bansal, R., Hedstrom, K. L., Pfeiffer, S. E., and Rasband, M. N. (2004) Does paranode formation and maintenance require partitioning of Neurofascin 155 into lipid rafts? J. Neurosci. 24, 3176–3185.PubMedCrossRefGoogle Scholar
  15. 15.
    Chevallet, M., Santoni, V., Poinas, A., et al. (1998) New zwitterionic detergents improve the analysis of membrane proteins by two-dimensional electrophoresis. Electrophoresis 19, 1901–1909.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Steven E. Pfeiffer
    • 1
  • Yoshihide Yamaguchi
    • 2
  • Cecilia B. Marta
    • 1
  • Rashmi Bansal
    • 1
  • Christopher M. Taylor
    • 1
  1. 1.Department of NeuroscienceUniversity of Connecticut Medical SchoolFarmington
  2. 2.Department of Molecular NeurobiologyTokyo University of Pharmacy and Life ScienceTokyoJapan

Personalised recommendations