Skip to main content

Magnetic Resonance Imaging of Tumor Response to Chemotherapy

  • Protocol
Chemosensitivity: Volume II

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 111))

  • 797 Accesses

Abstract

The breadth and substance of anatomic (structural) and novel physiological (functional) imaging methods to noninvasively monitor and assess anticancer therapies continues to grow. Current techniques span several imaging disciplines including magnetic resonance (MR) imaging, positron emission tomography (PET), computed tomography (CT), ultrasound (US), and optical-based methods using fluorescence and bioluminescence techniques. These methodologies applied in the clinic and/or in animal models offer unique insights into disease processes. Applications affected by imaging include therapeutic response assessment, improved diagnostic evaluations, enhanced delineation of tumor boundaries, elucidation of the underlying mechanisms of therapeutic response and drug resistance, identification of high-risk subpopulations of transgenic animals with specific alterations in their genome leading to abnormal phenotypes, and prediction of therapeutic outcome. This chapter provides a brief introduction to this emerging field, focusing specifically on novel MR applications related to chemotherapeutic response assessment, step-by-step procedures to perform the outlined techniques, and algorithms to analyze resultant data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gillies, R. J., Raghunand, N., Karczmar, G. S., and Bhujwalla, Z. M. (2002) MRI of the tumor microenvironment. J. Magn. Reson. Imaging 16, 430ā€“450.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  2. Bhujwalla, Z. M., Artemov, D., Aboagye, E., et al. (2001) The physiological environment in cancer vascularization, invasion and metastasis. Novartis. Found. Symp. 240, 23ā€“38.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Bhujwalla, Z. M., Artemov, D., Ballesteros, P., Cerdan, S., Gillies, R. J., and Solaiyappan, M. (2002) Combined vascular and extracellular pH imaging of solid tumors. NMR Biomed. 15, 114ā€“119.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Ross, B. D., Zhao, Y. J., Neal, E. R., et al. (1998) Contributions of cell kill and posttreatment tumor growth rates to the repopulation of intracerebral 9L tumors after chemotherapy: an MRI study. Proc. Natl. Acad. Sci. USA 95, 7012-7017.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  5. Howe, F. A., Robinson, S. P., Rodrigues, L. M., and Griffiths, J. R. (1999) Flow and oxygenation dependent (FLOOD) contrast MR imaging to monitor the response of rat tumors to carbogen breathing. Magn. Reson. Imaging 17, 1307ā€“1318.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Robinson, S. P., Collingridge, D. R., Howe, F. A., Rodrigues, L. M., Chaplin, D. J., and Griffiths, J. R. (1999) Tumour response to hypercapnia and hyperoxia monitored by FLOOD magnetic resonance imaging. NMR Biomed. 12, 98ā€“106.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Griffiths, J. R. and Glickson, J. D. (2000) Monitoring pharmacokinetics of anticancer drugs: non-invasive investigation using magnetic resonance spectroscopy. Adv. Drug Deliv. Rev. 41, 75ā€“89.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Ackerstaff, E., Glunde, K., and Bhujwalla, Z. M. (2003) Choline phospholipid metabolism: a target in cancer cells? J. Cell Biochem. 90, 525ā€“533.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. Bhujwalla, Z. M., Artemov, D., Natarajan, K., Ackerstaff, E., and Solaiyappan, M. (2001) Vascular differences detected by MRI for metastatic versus nonmetastatic breast and prostate cancer xenografts. Neoplasia 3, 143ā€“153.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  10. Bhujwalla, Z. M., Artemov, D., Natarajan, K., Solaiyappan, M., Kollars, P., and Kristjansen, P. E. (2003) Reduction of vascular and permeable regions in solid tumors detected by macromolecular contrast magnetic resonance imaging after treatment with antiangiogenic agent TNP-470. Clin. Cancer Res. 9, 355ā€“362.

    CASĀ  PubMedĀ  Google ScholarĀ 

  11. Lewin, M., Bredow, S., Sergeyev, N., Marecos, E., Bogdanov, A. Jr., and Weissleder, R. (1999) In vivo assessment of vascular endothelial growth factorinduced angiogenesis. Int. J. Cancer 83, 798ā€“802.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. Weissleder, R. and Mahmood, U. (2001) Molecular imaging. Radiology 219, 316ā€“333.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Boxerman, J. L., Bandettini, P. A., Kwong, K. K., et al. (1995) The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo. Magn. Reson. Med. 34, 4ā€“10.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Bandettini, P. A., Kwong, K. K., Davis, T. L., Tootell, R. B., Wong, E. C., and Fox, P. T. (1997) Characterization of cerebral blood oxygenation and flow changes during prolonged brain activation. Hum. Brain Mapp. 5, 93ā€“109.

    ArticleĀ  CASĀ  Google ScholarĀ 

  15. Davis, T. L., Kwong, K. K., Weisskoff, R. M., and Rosen, B. R. (1998) Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc. Natl. Acad. Sci. USA 95, 1834ā€“1839.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  16. Howe, F. A., Robinson, S. P., McIntyre, D. J., Stubbs, M., and Griffiths, J. R. (2001) Issues in flow and oxygenation dependent contrast (FLOOD) imaging of tumours. NMR Biomed. 14, 497ā€“506.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Bott, G. (1985) Vasodilators and regional blood flow. Indian J. Pharmacol. 1985.

    Google ScholarĀ 

  18. Mazurchuk, R., Zhou, R., Straubinger, R. M., Chau, R. I., and Grossman, Z. (1999) Functional magnetic resonance (fMR) imaging of a rat brain tumor model: implications for evaluation of tumor microvasculature and therapeutic response. Magn. Reson. Imaging 17, 537ā€“548.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  19. Zhou, R., Mazurchuk, R., and Straubinger, R. M. (2002) Antivasculature effects of doxorubicin-containing liposomes in an intracranial rat brain tumor model. Cancer Res. 62, 2561ā€“2566.

    CASĀ  PubMedĀ  Google ScholarĀ 

  20. Bhattacharya, A., Toth, K., Mazurchuk, R., et al. (2004) Lack of microvessels in well-differentiated regions of human head and neck squamous cell carcinoma A253 is associated with fMR imaging detectable hypoxia, limited drug delivery and resistance to irinotecan therapy. Clin. Cancer Res. 10, 8005ā€“8017.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  21. Neeman, M. and Dafni, H. (2003) Structural functional, and molecular MR imaging of the microvasculature. Annu. Rev. Biomed. Eng. 5, 29ā€“56.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  22. Neeman, M., Dafni, H., Bukhari, O., Braun, R. D., and Dewhirst, M. W.(2001) In vivo BOLD contrast MRI mapping of subcutaneous vascular function and maturation: validation by intravital microscopy. Magn. Reson. Med. 45, 887ā€“898.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. Shaharabany, M., Abramovitch, R., Kushnir, T., et al. (2001) In vivo molecular imaging of met tyrosine kinase growth factor receptor activity in normal organs and breast tumors. Cancer Res. 61, 4873ā€“4878.

    CASĀ  PubMedĀ  Google ScholarĀ 

  24. Artemov, D., Solaiyappan, M., and Bhujwalla, Z. M. (2001) Magnetic resonance pharmacoangiography to detect and predict chemotherapy delivery to solid tumors. Cancer Res. 61, 3039ā€“3044.

    CASĀ  PubMedĀ  Google ScholarĀ 

  25. Fenton, B. M., Lord, E. M., and Paoni, S. F. (2000) Enhancement of tumor perfusion and oxygenation by carbogen and nicotinamide during single-and multifraction irradiation. Radiat. Res. 153, 75ā€“83.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Chenevert, T. L., Meyer, C. R., Moffat, B. A., et al. (2002) Diffusion MRI: a new strategy for assessment of cancer therapeutic efficacy. Mol. Imaging 1, 336ā€“343.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  27. Ross, B. D., Moffat, B. A., Lawrence, T. S., et al. (2003) Evaluation of cancer therapy using diffusion magnetic resonance imaging. Mol. Cancer Ther. 2, 581ā€“587.

    CASĀ  PubMedĀ  Google ScholarĀ 

  28. Chenevert, T. L., Stegman, L. D., Taylor, J. M., et al. (2000) Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors. J. Natl. Cancer Inst. 92, 2029ā€“2036.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  29. Stegman, L. D., Rehemtulla, A., Hamstra, D. A., et al. (2000) Diffusion MRI detects early events in the response of a glioma model to the yeast cytosine deaminase gene therapy strategy. Gene Ther. 7, 1005ā€“1010.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  30. Chenevert, T. L., McKeever, P. E., and Ross, B. D. (1997) Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging. Clin. Cancer Res. 3, 1457ā€“1466.

    CASĀ  PubMedĀ  Google ScholarĀ 

  31. Daldrup-Link, H. E. and Brasch, R. C. (2003) Macromolecular contrast agents for MR mammography: current status. Eur. Radiol. 13, 354ā€“365.

    PubMedĀ  Google ScholarĀ 

  32. Choyke, P. L., Dwyer, A. J., and Knopp, M. V. (2003) Functional tumor imaging with dynamic contrast-enhanced magnetic resonance imaging. J. Magn. Reson. Imaging 17, 509ā€“520.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  33. Padhani, A. R. (2002) Dynamic contrast-enhanced MRI in clinical oncology: current status and future directions. J. Magn. Reson. Imaging 16, 407ā€“422.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  34. Roberts, T. P., Turetschek, K., Preda, A., et al. (2002) Tumor microvascular changes to anti-angiogenic treatment assessed by MR contrast media of different molecular weights. Acad. Radiol. 9(Suppl. 2), S511ā€“S513.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  35. Roberts, T. P., Helbich, T. H., Ley, S., et al. (2002) Utility (or not) of Gd-DTPA-based dynamic MRI for breast cancer diagnosis and grading. Acad. Radiol. 9 (Suppl. 1), S261ā€“S265.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  36. Roberts, H. C., Roberts, T. P., Brasch, R. C., and Dillon, W. P. (2000) Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. Am. J. Neuroradiol. 21, 891ā€“899.

    CASĀ  PubMedĀ  Google ScholarĀ 

  37. Gossmann, A., Helbich, T. H., Kuriyama, N., et al. (2002) Dynamic contrastenhanced magnetic resonance imaging as a surrogate marker of tumor response to anti-angiogenic therapy in a xenograft model of glioblastoma multiforme. J. Magn. Reson. Imaging 15, 233ā€“240.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  38. Stiskal, M., Demsar, F., Muhler, A., et al. (1999) Contrast-enhanced MR imaging of two superparamagnetic RES-contrast agents: functional assessment of experimental radiation-induced liver injury. J. Magn. Reson. Imaging 10, 52ā€“56.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  39. Pham, C. D., Roberts, T. P., van Bruggen, N., et al. (1998) Magnetic resonance imaging detects suppression of tumor vascular permeability after administration of antibody to vascular endothelial growth factor. Cancer Invest. 16, 225ā€“230.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  40. Brasch, R., Pham, C., Shames, D., et al. (1997) Assessing tumor angiogenesis using macromolecular MR imaging contrast media. J. Magn. Reson. Imaging 7, 68ā€“74.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  41. Aksoy, F. G. and Lev, M. H. (2000) Dynamic contrast-enhanced brain perfusion imaging: technique and clinical applications. Semin. Ultrasound CTMR 21, 462ā€“477.

    ArticleĀ  CASĀ  Google ScholarĀ 

  42. Padhani, A. R., Gapinski, C. J., Macvicar, D. A., et al. (2000) Dynamic contrast enhanced MRI of prostate cancer: correlation with morphology and tumour stage, histological grade and PSA. Clin. Radiol. 55, 99ā€“109.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  43. Kurhanewicz, J., Swanson, M. G., Nelson, S. J., and Vigneron, D. B. (2002) Combined magnetic resonance imaging and spectroscopic imaging approach to molecular imaging of prostate cancer. J. Magn. Reson. Imaging 16, 451ā€“463.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  44. Mueller-Lisse, U. G., Vigneron, D. B., Hricak, H., et al. (2001) Localized prostate cancer: effect of hormone deprivation therapy measured by using combined three-dimensional 1H MR spectroscopy and MR imaging: clinicopathologic casecontrolled study. Radiology 221, 380ā€“390.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  45. Males, R. G., Vigneron, D. B., Star-Lack, J., et al. (2000) Clinical application of BASING and spectral/spatial water and lipid suppression pulses for prostate cancer staging and localization by in vivo 3D 1H magnetic resonance spectroscopic imaging. Magn. Reson. Med. 43, 17ā€“22.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  46. Yu, K. K., Scheidler, J., Hricak, H., et al. (1999) Prostate cancer: prediction of extracapsular extension with endorectal MR imaging and three-dimensional proton MR spectroscopic imaging. Radiology 213, 481ā€“488.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  47. Scheidler, J., Hricak, H., Vigneron, D. B., et al. (1999) Prostate cancer: localization with three-dimensional proton MR spectroscopic imaging-clinicopathologic study. Radiology 213, 473ā€“480.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  48. Artemov, D., Pilatus, U., Chu, S., Mori, N., Nelson, J. B., and Bhujwalla, Z. M. (1999) Dynamics of prostate cancer cell invasion studied in vitro by NMR microscopy. Magn. Reson. Med. 42, 277ā€“282.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  49. Kaji, Y., Kurhanewicz, J., Hricak, H., et al. (1998) Localizing prostate cancer in the presence of postbiopsy changes on MR images: role of proton MR spectroscopic imaging. Radiology 206, 785ā€“790.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  50. Parivar, F., Hricak, H., Shinohara, K., et al. (1996) Detection of locally recurrent prostate cancer after cryosurgery: evaluation by transrectal ultrasound, magnetic resonance imaging, and three-dimensional proton magnetic resonance spectroscopy. Urology 48, 594ā€“599.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  51. Kurhanewicz, J., Vigneron, D. B., Hricak, H., et al. (1996) Prostate cancer: metabolic response to cryosurgery as detected with 3D H-1 MR spectroscopic imaging. Radiology 200, 489ā€“496.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  52. Kurhanewicz, J., Vigneron, D. B., Hricak, H., Narayan, P., Carroll, P., and Nelson, S. J. (1996) Three-dimensional H-1 MR spectroscopic imaging of the in situ human prostate with high (0.24-0.7-cm3) spatial resolution. Radiology 198, 795ā€“805.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  53. Kurhanewicz, J., Vigneron, D. B., Nelson, S. J., et al. (1995) Citrate as an in vivo marker to discriminate prostate cancer from benign prostatic hyperplasia and normal prostate peripheral zone: detection via localized proton spectroscopy. Urology 45, 459ā€“466.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  54. Blackstock, A. W., Lightfoot, H., Case, L. D., et al. (2001) Tumor uptake and elimination of 2?,2?-difluoro-2?-deoxycytidine (gemcitabine) after deoxycytidine kinase gene transfer: correlation with in vivo tumor response. Clin. Cancer Res. 7, 3263ā€“3268.

    CASĀ  PubMedĀ  Google ScholarĀ 

  55. Brix, G., Bellemann, M. E., Gerlach, L., and Haberkorn, U.(1998) Intra-and extracellular fluorouracil uptake: assessment with contrast-enhanced metabolic F-19 MR imaging. Radiology 209, 259ā€“267.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  56. Vion-Dury, J., Machy, P., Confort-Gouny, S., Leserman, L., and Cozzone, P. J. (1993) Specific in vitro labeling of cells with a fluorine-19 probe encapsulated in antibody-targeted liposomes: a F-19 NMR spectroscopy study. Magn. Reson. Med. 29, 252ā€“255.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  57. Wolf, W., Albright, M. J., Silver, M. S., Weber, H., Reichardt, U., and Sauer, R. (1987) Fluorine-19 NMR spectroscopic studies of the metabolism of 5-fluorouracil in the liver of patients undergoing chemotherapy. Magn. Reson. Imaging 5, 165ā€“169.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  58. Yamada, K., Matsuzawa, T., Sato, T., et al. (1986) In vivo F-19 NMR imaging and the influence of oxygenation on relaxation time. Sci. Rep. Res. Inst. Tohoku Univ. [Med.] 33, 44ā€“48.

    CASĀ  Google ScholarĀ 

  59. Kanazawa, Y., Momozono, Y., Ishikawa, M., et al. (1986) Metabolic pathway of 2-deoxy-2-fluoro-D-glucose studied by F-19 NMR. Life Sci. 39, 737ā€“742.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  60. Raleigh, J. A., Franko, A. J., Treiber, E. O., Lunt, J. A., and Allen, P. S. (1986) Covalent binding of a fluorinated 2-nitroimidazole to EMT-6 tumors in Balb/C mice: detection by F-19 nuclear magnetic resonance at 2.35 T. Int. J. Radiat. Oncol. Biol. Phys. 12, 1243ā€“1245.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  61. Nicholson, J. K., Connelly, J., Lindon, J. C., and Holmes, E. (2002) Metabonomics: a platform for studying drug toxicity and gene function. Nat. Rev. Drug Discov. 1, 153ā€“161.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  62. Mazurchuk, R., Glaves, D., and Raghavan, D. (1997) Magnetic resonance imaging of response to chemotherapy in orthotopic xenografts of human bladder cancer. Clin. Cancer Res. 3, 1635ā€“1641.

    CASĀ  PubMedĀ  Google ScholarĀ 

  63. Ostrowitzki, S., Fick, J., Roberts, T. P., et al. (1998) Comparison of gadopentetate dimeglumine and albumin-(Gd-DTPA)30 for microvessel characterization in an intracranial glioma model. J. Magn. Reson. Imaging 8- 799ā€“806.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  64. Schellenberger, E. A., Bogdanov, A. Jr., Hogemann, D., Tait, J., Weissleder, R., and Josephson, L. (2002) Annexin V-CLIO: a nanoparticle for detecting apoptosis by MRI. Mol. Imaging 1, 102ā€“107.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  65. Peter Bigler. NMR Spectroscopy: Processing Strategies, 2nd ed., Wiley-VCH, New York, 2000.

    Google ScholarĀ 

  66. de Graaf, RA. In Vivo NMR Spectroscopy, Wiley, New York, 1988.

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Mazurchuk, R., Spernyak, J.A. (2005). Magnetic Resonance Imaging of Tumor Response to Chemotherapy. In: Blumenthal, R.D. (eds) Chemosensitivity: Volume II. Methods in Molecular Medicineā„¢, vol 111. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-889-7:381

Download citation

  • DOI: https://doi.org/10.1385/1-59259-889-7:381

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-586-6

  • Online ISBN: 978-1-59259-889-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics