Skip to main content

Measurement of Ceramide and Sphingolipid Metabolism in Tumors

Potential Modulation of Chemotherapy

  • Protocol
Chemosensitivity: Volume II

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 111))

  • 846 Accesses

Abstract

Ceramide is a bioactive lipid involved in the induction of apoptosis and is the precursor to several sphingolipids, including sphingomyelin, the gangliosides, and sphingosine. Ceramide production is increased in response to stress and toxic agents. Because modulation of ceramide levels has been shown to affect sensitivity and/or resistance to therapeutic agents, it will be important to assess the activity of sphingolipid metabolic pathways when investigating the mode of action of antitumor drugs. This chapter summarizes protocols for quantitating the level of apoptosis, the activities of acidic sphingomyelinase, neutral sphingomyelinase, glycosylceramide synthase, sphingomyelin synthase, and ceramidase, and the amount of ceramide in tumor xenografts in nude mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jarvis, W. D. and Grant, S. (1998) The role of ceramide in the cellular response to cytotoxic agents. Curr. Opin. Oncol. 10, 552ā€“559.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. Liu, G., Kleine, L., and Hebert, R. L. (1999) Advances in the signal transduction of ceramide and related sphingolipids. Crit. Rev. Clin. Lab. Sci. 36, 511ā€“573.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Pena, L. A., Fuks, Z., and Kolesnick, R. (1997) Stress-induced apoptosis and the sphingomyelin pathway. Biochem. Pharmacol. 53, 615ā€“621.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Levade, T. and Jaffrezou, J. P. (1999) Signalling sphingomyelinases: which, where, how and why? Biochim. Biophys. Acta 1438, 1ā€“17.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Liu, B., Obeid, L. M., and Hannun, Y. A. (1997) Sphingomyelinases in cell regulation. Semin. Cell Dev. Biol. 8, 311ā€“322.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Cabot, M. C., Giuliano, A. E., Han, T. Y., and Liu, Y. Y. (1999) SDZ PSC 833, the cyclosporine A analogue and multidrug resistance modulator, activates ceramide synthesis and increases vinblastine sensitivity in drug-sensitive and drugresistant cancer cells. Cancer Res. 59, 880ā€“885.

    CASĀ  PubMedĀ  Google ScholarĀ 

  7. Bose, R., Verheij, M., Haimovitz-Friedman, A., Scotto, K., Fuks, Z., and Kolesnick, R. (1995) Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell 82, 405ā€“414.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Liu, Y. Y., Han, T. Y., Giuliano, A. E., and Cabot, M. C. (1999) Expression of glucosylceramide synthase, converting ceramide to glucosylceramide, confers adriamycin resistance in human breast cancer cells. J. Biol. Chem. 274, 1140ā€“1146.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. Senchenkov, A., Litvak, D. A., and Cabot, M. C. (2001) Targeting ceramide metabolism-a strategy for overcoming drug resistance. J. Natl. Cancer Inst. 93, 347ā€“357.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Kolesnick, R. (2002) The therapeutic potential of modulating the ceramide/sphingomyelin pathway. J. Clin. Invest. 110, 3ā€“8.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  11. Modrak, D. E., Rodriguez, M. D., Goldenberg, D.M., Lew, W., and Blumenthal, R. D. (2002) Sphingomyelin enhances chemotherapy efficacy and increases apoptosis in human colonic tumor xenografts. Int. J. Oncol. 20, 379ā€“384.

    CASĀ  PubMedĀ  Google ScholarĀ 

  12. Merrill, A. and Hannun, Y. (eds.) (2000) Sphingolipid Metabolism and Cell Signalling, Part A, Vol. 311. Academic, London.

    Google ScholarĀ 

  13. Merrill, A. and Hannun, Y. (eds.) (2000) Sphingolipid Metabolism and Cell Signalling, Part B, Vol. 312. Academic, London.

    Google ScholarĀ 

  14. Hansen, H. J., Goldenberg, D. M., Newman, E. S., Grebenau, R., and Sharkey, R. M. (1993) Characterization of second-generation monoclonal antibodies against carcinoembryonic antigen. Cancer 71, 3478ā€“3485.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  15. Bligh, E. G. and Dyer, W. J. (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911ā€“917.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. Ames, B. N. (1966) Assay of inorganic phosphate, total phosphate and phosphatases. Meth. Enzymol. 8, 115ā€“118.

    ArticleĀ  CASĀ  Google ScholarĀ 

  17. Bodennec, J., Brichon, G., Koul, O., El Babili, M., and Zwingelstein, G. (1997) A two-dimensional thin-layer chromatography procedure for simultaneous separation of ceramide and diacylglycerol species. J. Lipid Res. 38, 1702ā€“1706.

    CASĀ  PubMedĀ  Google ScholarĀ 

  18. Morgan, E. T., Nikolova-Karakashian, M., Chen, J. Q., and Merrill, A. H. Jr. (1996) Sphingolipid-dependent signaling in regulation of cytochrome P450 expression. Meth. Enzymol. 272, 381ā€“388.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  19. Watts, J. D., Gu, M., Polverino, A. J., Patterson, S. D., and Aebersold, R. (1997) Fas-induced apoptosis of T cells occurs independently of ceramide generation. Proc. Natl. Acad. Sci. USA 94, 7292ā€“7296.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  20. Tepper, A. D. and Van Blitterswijk, W. J. (2000) Ceramide mass analysis by normalphase high-performance liquid chromatography. Meth. Enzymol. 312, 16ā€“22.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  21. Liu, P. and Anderson, R. G. (1995) Compartmentalized production of ceramide at the cell surface. J. Biol. Chem. 270, 27,179ā€“27,185.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  22. Sillence, D. J., Raggers, R. J., and van Meer, G. (2000) Assays for transmembrane movement of sphingolipids. Meth. Enzymol. 312, 562ā€“579.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. Liu, B. and Hannun, Y. A. (2000) Sphingomyelinase assay using radiolabeled substrate. Meth. Enzymol. 311, 164ā€“167.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  24. Hertervig, E., Nilsson, A., Nyberg, L., and Duan, R. D. (1997) Alkaline sphingomyelinase activity is decreased in human colorectal carcinoma. Cancer 79, 448ā€“453.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  25. Shayman, J. A. and Abe, A. (2000) Glucosylceramide synthase: assay and properties. Meth. Enzymol. 311, 42ā€“49.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Nikolova-Karakashian, M. (2000) Assays for the biosynthesis of sphingomyelin and ceramide phosphoethanolamine. Meth. Enzymol. 311, 31ā€“42.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  27. Nikolova-Karakashian, M. and Merrill, A. H. Jr. (2000) Ceramidases. Meth. Enzymol. 311, 194ā€“201.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  28. Perry, D. K. and Hannun, Y. A. (1999) The use of diglyceride kinase for quantifying ceramide. Trends Biochem. Sci. 24, 226ā€“227.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  29. Liu, B. and Hannun, Y. A. (1997)Inhibition of the neutral magnesium-dependent sphingomyelinase by glutathione. J. Biol. Chem. 272, 16,281ā€“16,287.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  30. Brenkert, A. and Radin, N. S. (1972) Synthesis of galactosyl ceramide and glucosyl ceramide by rat brain: assay procedures and changes with age. Brain Res. 36, 183ā€“193.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  31. Shukla, G. S. and Radin, N. S. (1990) Glucosyceramide synthase of mouse kidney: further characterization with an improved assay method. Arch. Biochem. Biophys. 283, 372ā€“378.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Modrak, D.E. (2005). Measurement of Ceramide and Sphingolipid Metabolism in Tumors. In: Blumenthal, R.D. (eds) Chemosensitivity: Volume II. Methods in Molecular Medicineā„¢, vol 111. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-889-7:183

Download citation

  • DOI: https://doi.org/10.1385/1-59259-889-7:183

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-586-6

  • Online ISBN: 978-1-59259-889-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics