Transgenic Mouse Models for Cardiac Dysfunction by a Specific Gene Manipulation

  • Gopal J. Babu
  • Muthu Periasamy
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 112)


The sarcoplasmic reticulum Casn+2 ATPase (SERCA) plays a pivotal role in calcium cycling and the beat-to-beat function of the heart. Recent studies have shown that decreased expression and activity of SERCA are associated with end-stage heart failure in humans and in experimental animal models of heart failure. There has been considerable controversy over whether a decrease in SERCA level is a cause or effect of hypertrophy. To address directly whether alterations in SERCA levels modify calcium homeostasis and heart function, we have chosen to alter the SERCA protein expression genetically using transgenic and gene-targeted knockout mouse technology. This chapter describes the methodology for generation of mouse models that overexpress different SERCA isoforms and a SERCA2 knockout mouse model with de creased SERCA levels.

Key Words

SR Ca +2 ATPase αMHC promoter transgenic knockout mouse heart 


  1. 1.
    Bers, D. M. and Perez-Reyes, E. (1999) Ca channels in cardiac myocytes: struc ture and function in Ca influx and intracellular Ca release. Cardiovasc. Res. 42, 339–360.PubMedCrossRefGoogle Scholar
  2. 2.
    Stokes, D. L. and Wagenknecht, T. (2000) Calcium transport across the sarco plasmic reticulum: structure and function of Ca2+-ATPase and the ryanodine re ceptor. Eur. J. Biochem. 267, 5274–5279.PubMedCrossRefGoogle Scholar
  3. 3.
    Periasamy, M. and Huke, S.(2001) SERCA pump level is a critical determinant of Ca(2+)homeostasis and cardiac contractility. J. Mol. Cell. Cardiol. 33, 1053–1063.PubMedCrossRefGoogle Scholar
  4. 4.
    Frank, K. F., Bolck. B., Erdmann, E., and Schwinger R. H(2003) Sarcoplasmic reticulum Ca2+-ATPase modulates cardiac contraction and relaxation. Cardiovasc. Res. 57, 20–27.PubMedCrossRefGoogle Scholar
  5. 5.
    MacLennan, D. H., Abu-Abed, M., and Kang, C. (2002) Structure-function rela tionships in Ca(2+) cycling proteins. J. Mol. Cell. Cardiol. 34, 897–918.PubMedCrossRefGoogle Scholar
  6. 6.
    Loukianov, E., Ji, Y., Baker, D. L., et al. (1998) Sarco(endo)plasmic reticulum Ca2+ ATPase isoforms and their role in muscle physiology and pathology. Ann. NYAcad. Sci. 853, 251–259.CrossRefGoogle Scholar
  7. 7.
    Shull, G. E. (2000) Gene knockout studies of Ca2+-transporting ATPases. Eur. J. Biochem. 267, 5284–5290.PubMedCrossRefGoogle Scholar
  8. 8.
    Luss, I., Boknik, P., Jones, L. R., et al. (1999) Expression of cardiac calcium regulatory proteins in atrium v ventricle in different species. J. Mol. Cell. Cardiol. 31, 1299–1314.PubMedCrossRefGoogle Scholar
  9. 9.
    Reed, T. D., Babu, G. J., Ji, Y., et al. (2000) The expression of SR calcium trans port ATPase and the Na(+)/Ca(2+)exchanger are antithetically regulated during mouse cardiac development and in hypo/hyperthyroidism. J. Mol. Cell. Cardiol. 32453–464.PubMedCrossRefGoogle Scholar
  10. 10.
    Arai, M., Matsui, H., and Periasamy, M.(1994) Sarcoplasmic reticulum gene expression in cardiac hypertrophy and heart failure. Circ. Res. 74, 555–564.PubMedGoogle Scholar
  11. 11.
    Houser, S. R., Piacentino, V. 3rd, and Weisser, J. (2000) Abnormalities of calcium cycling in the hypertrophied and failing heart. J. Mol. Cell. Cardiol. 32, 1595–1607.PubMedCrossRefGoogle Scholar
  12. 12.
    Subramaniam, A., Jones, W. K., Gulick, J., Wert, S., Neumann, J., and Robbins, J. (1991) Tissue-specific regulation of the alpha-myosin heavy chain gene pro moter in transgenic mice. J. Biol. Chem. 266, 24,613–24,620.PubMedGoogle Scholar
  13. 13.
    Chu, G., Dorn, G. W. 2nd, Luo, W., et al. (1997) Monomeric phospholamban overexpression in transgenic mouse hearts. Circ. Res. 81, 485–492.PubMedGoogle Scholar
  14. 14.
    James, J., Zhang, Y., Osinska, H., et al. (2000) Transgenic modeling of a cardiac troponin I mutation linked to familial hypertrophic cardiomyopathy. Circ. Res. 87, 805–811.PubMedGoogle Scholar
  15. 15.
    Bueno, O. F., De Windt, L. J., Tymitz, K. M., et al. (2000) The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J. 19, 6341–6350.PubMedCrossRefGoogle Scholar
  16. 16.
    Yang, Q., Osinska, H., Klevitsky, R., and Robbins, J. (2001) Phenotypic deficits in mice expressing a myosin binding protein C lacking the titin and myosin bind ing domains. J. Mol. Cell. Cardiol. 33, 1649–1658.PubMedCrossRefGoogle Scholar
  17. 17.
    Prabhakar, R., Boivin, G. P., Grupp, I. L., et al. (2001) A familial hypertrophic cardiomyopathy alpha-tropomyosin mutation causes severe cardiac hypertrophy and death in mice. J. Mol. Cell. Cardiol. 33, 1815–1828.PubMedCrossRefGoogle Scholar
  18. 18.
    Hogan, B., Constantini, F., and Lacy, E.(1986) Manipulating the Mouse Embryo: A Laboratory Manual, Cold Spring Harbor laboratory, Cold Spring Harbor, NY, pp. 79–173.Google Scholar
  19. 19.
    Periasamy, M., Reed, T. D., Liu, L. H., et al. (1999) Impaired cardiac perfor mance in heterozygous mice with a null mutation in the sarco(endo)plasmic reticu lum Ca2+-ATPase isoform 2 (SERCA2) gene. J. Biol. Chem. 274, 2556–2562.PubMedCrossRefGoogle Scholar
  20. 20.
    Baker, D. L., Hashimoto, K., Grupp, I. L., et al. (1998) Targeted overexpression of the sarcoplasmic reticulum Ca2+-ATPase increases cardiac contractility in transgenic mouse hearts. Circ. Res. 83, 1205–1214.PubMedGoogle Scholar
  21. 21.
    Huke, S., Prasad, V., Nieman, M. L., et al. (2002) Altered dose response to beta-agonists in SERCA1a-expressing hearts ex vivo and in vivo. Am. J. Physiol. Heart Circ. Physiol. 283, H958–H965.PubMedGoogle Scholar
  22. 22.
    Huke, S., Liu, L. H., Biniakiewicz, D., Abraham, W. T., and Periasamy, M. (2003) Altered force-frequency response in non-failing hearts with decreased SERCA pump-level. Cardiovas. Res. 59, 668–677.CrossRefGoogle Scholar
  23. 23.
    Greene, A. L., Lalli, M. J., Ji, Y., Babu, G. J., Grupp, I., Sussman, M., and Periasamy M. (2000) Overexpression of SERCA2b in the heart leads to an in crease in sarcoplasmic reticulum calcium transport function and increased cardiac contractility. J. Biol. Chem. 275, 24,722–24,727.PubMedCrossRefGoogle Scholar
  24. 24.
    Loukianov, E., Ji, Y., Grupp, I. L., Kirkpatrick, D. L., et al. (1998) Enhanced myocardial contractility and increased Ca2+ transport function in transgenic hearts expressing the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+-ATPase. Circ. Res. 83, 889–897.PubMedGoogle Scholar
  25. 25.
    Ji, Y., Loukianov, E., Loukianova, T., Jones, L. R., and Periasamy, M. (1999) SERCA1a can functionally substitute for SERCA2a in the heart. Am. J. Physiol 276, H89–H97.PubMedGoogle Scholar
  26. 26.
    Ji, Y., Lalli, M. J., Babu, G. J., et al. (2000) Disruption of a single copy of the SERCA2 gene results in altered Ca2+ homeostasis and cardiomyocyte function. J. Biol. Chem. 275, 38,073–38,080.PubMedCrossRefGoogle Scholar
  27. 27.
    Franz, W. M., Breves, D., Klingel, K., Brem, G., Hofschneider, P. H., and Kandolf, R. (1993) Heart-specific targeting of firefly luciferase by the myosin light chain-2 promoter and developmental regulation in transgenic mice. Circ. Res. 73, 629–638.PubMedGoogle Scholar
  28. 28.
    Wessely, R., Klingel, K., Santana, L. F., et al. (1998) Transgenic expression of replication-restricted enteroviral genomes in heart muscle induces defective exci tation-contraction coupling and dilated cardiomyopathy. J. Clin. Invest. 102, 1444–1453.PubMedCrossRefGoogle Scholar
  29. 29.
    Yan, X., Price, R. L., Nakayama, M., et al. (2003) Ventricular-specific expression of angiotensin II type 2 receptor causes dilated cardiomyopathy and heart failure in transgenic mice. Am. J. Physiol. Heart. Circ. Physiol. 285, H2179–H2187.PubMedGoogle Scholar
  30. 30.
    Passman, R. S. and Fishman, G. I. (1994) Regulated expression of foreign genes in vivo after germline transfer. J. Clin. Invest. 94, 2421–2425.PubMedCrossRefGoogle Scholar
  31. 31.
    Sanbe, A., Gulick, J., Hanks, M. C., Liang, Q., Osinska, H., and Robbins, J. (2003) Reengineering inducible cardiac-specific transgenesis with an attenuated myosin heavy chain promoter. Circ. Res. 92, 609–616.PubMedCrossRefGoogle Scholar
  32. 32.
    Sohal, D. S., Nghiem, M., Crackower, M. A., et al. (2001) Temporally regulated and tissue-specific gene manipulations in the adult and embryonic heart using a tamoxifen-inducible Cre protein. Circ. Res. 89, 20–25.PubMedCrossRefGoogle Scholar
  33. 33.
    Petrich, B. G., Molkentin, J. D., and Wang, Y. (2003) Temporal activation of c-Jun N-terminal kinase in adult transgenic heart via cre-loxP-mediated DNA recombination. FASEB J. 17, 749–751.PubMedGoogle Scholar
  34. 34.
    Hajjar, R. J., Kang, J. X., Gwathmey, J. K., and Rosenzweig, A. (1997) Physi ological effects of adenoviral gene transfer of sarcoplasmic reticulum calcium ATPase in isolated rat myocytes. Circulation. 95, 423–429.PubMedGoogle Scholar
  35. 35.
    Hajjar, R. J., Schmidt, U., Kang, J. X., Matsui, T., and Rosenzweig, A. (1997) Adenoviral gene transfer of phospholamban in isolated rat cardiomyocytes. Res cue effects by concomitant gene transfer of sarcoplasmic reticulum Ca(2+)-AT-Pase. Circ. Res. 81, 145–153.PubMedGoogle Scholar
  36. 36.
    Chossat, N., Griscelli, F., Jourdon, P., et al. (2001) Adenoviral SERCA1a gene transfer to adult rat ventricular myocytes induces physiological changes in cal cium handling. Cardiovasc. Res. 49, 288–297.PubMedCrossRefGoogle Scholar
  37. 37.
    Periasamy, M. (2001) Adenoviral-mediated serca gene transfer into cardiac myocytes: how much is too much? Circ. Res 88, 373–375.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Gopal J. Babu
    • 1
  • Muthu Periasamy
    • 1
  1. 1.Department of Physiology and Cell BiologyThe Ohio StateUniversityColumbusOH

Personalised recommendations