Methods for Examining Stem Cells in Post-Ischemic and Transplanted Hearts

  • Nana Rezai
  • Hubert Walinski
  • Alexandra Kerjner
  • Lubos Bohunek
  • Fabio M. V. Rossi
  • Bruce M. McManus
  • Thomas J. Podor
Protocol
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 112)

Abstract

Currently, the tenet that heart muscle cells are terminally differentiated and incapable of self-repair is being challenged. Recent experimental observations suggest that both endogenous and exogenous stem cell populations have the potential to regenerate damaged areas within the heart. These findings hold promise for new therapeutic strategies to treat cardiovascular diseases, including common conditions like myocardial infarction and transplant vascular disease (TVD). In this chapter, we focus on the study of endogenous stem cells in the context of their role in modulation of cardiovascular diseases, including ischemic heart disease and TVD. Specific experimental models and methods used to study the phenomena of endogenous bone marrow-derived stem cell migration and potential differentiation are also described.

Key Words

Myocardial infarction transplant vascular disease stem cells cardiomyocytes endothelial cells smooth muscle cells confocal microscopy 

References

  1. 1.
    Caplan, A. I. and Bruder, S. P. (2001) Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends. Mol. Med. 7, 259–264.PubMedCrossRefGoogle Scholar
  2. 2.
    Makino, S., Fukuda, K., Miyoshi, S., et al. (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J. Clin. Invest. 103, 697–705.PubMedCrossRefGoogle Scholar
  3. 3.
    Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147.PubMedCrossRefGoogle Scholar
  4. 4.
    Grigoriadis, A. E., Heersche, J. N., and Aubin, J. E. (1988) Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone. J. Cell. Biol. 106, 2139–2151.PubMedCrossRefGoogle Scholar
  5. 5.
    Prockop, D. J. (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276, 71–74.PubMedCrossRefGoogle Scholar
  6. 6.
    Goodell, M. A., Brose, K., Paradis, G., et al. (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med. 183, 1797–1806.PubMedCrossRefGoogle Scholar
  7. 7.
    Corbel, S. Y., Lee, A., Yi, L., et al. (2003) Contribution of hematopoietic stem cells to skeletal muscle. Nat. Med. 9, 1528–1532.PubMedCrossRefGoogle Scholar
  8. 8.
    Jackson, K. A., Majka, S. M., Wang, H., et al. (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest. 107, 1395–1402.PubMedCrossRefGoogle Scholar
  9. 9.
    Jackson, K. A., Majka, S. A., Wang, H., et al. (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest. 107, 1395–1402.PubMedCrossRefGoogle Scholar
  10. 10.
    Orlic, D., Kajstura, J., Chimenti, S., et al. (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410, 701–705.PubMedCrossRefGoogle Scholar
  11. 11.
    Orlic, D., Kajstura, J., Chimenti, S., et al. (2003) Bone marrow stem cells regenerate infarcted myocardium. Pediatr. Transplant. 7, 86–88.PubMedCrossRefGoogle Scholar
  12. 12.
    Goodell, M. A., Jackson, K. A., Majka, S. M., et al. (2001) Stem cell plasticity in muscle and bone marrow. Ann. NY Acad. Sci. 938, 208–218; discussion 218-220.PubMedCrossRefGoogle Scholar
  13. 13.
    Haynesworth, S. E., Goshima, J., Goldberg, V. M., et al. (1992) Characterization of cells with osteogenic potential from human marrow. Bone 13, 81–88.PubMedCrossRefGoogle Scholar
  14. 14.
    Soonpaa, M. H. and Field, L. J. (1998) Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ. Res. 83, 15–26.PubMedGoogle Scholar
  15. 15.
    Soonpaa, M. H., Koh, G. Y., Pajak, L., et al. (1997) Cyclin D1 overexpression promotes cardiomyocyte DNA synthesis and multinucleation in transgenic mice. J. Clin. Invest. 99, 2644–2654.PubMedCrossRefGoogle Scholar
  16. 16.
    Laflamme, M. A., Myerson, D., Saffitz, J. E., et al. (2002) Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts. Circ. Res. 90, 634–640.PubMedCrossRefGoogle Scholar
  17. 17.
    Quaini, F., Urbanek, K., Beltrami, A. P., et al. (2002) Chimerism of the transplanted heart. N. Engl. J. Med. 346, 5–15.PubMedCrossRefGoogle Scholar
  18. 18.
    Gao, S. Z., Schroeder, J. S., Alderman, E. L., et al. (1987) Clinical and laboratory correlates of accelerated coronary artery disease in the cardiac transplant patient. Circulation 76, V56–61.PubMedGoogle Scholar
  19. 19.
    Gao, S. Z., Alderman, E. L., Schroeder, J. S., et al. (1988) Accelerated coronary vascular disease in the heart transplant patient: coronary arteriographic findings. J. Am. Coll. Cardiol. 12, 334–340.PubMedCrossRefGoogle Scholar
  20. 20.
    Lai, J. C., Tranfield, E. M., Walker, D. C., et al. (2003) Ultrastructural evidence of early endothelial damage in coronary arteries of rat cardiac allografts. J. Heart Lung Transplant. 22, 993–1004.PubMedCrossRefGoogle Scholar
  21. 21.
    Dong, C., Redenbach, D., Wood, S., et al. (1996) The pathogenesis of cardiac allograft vasculopathy. Curr. Opin. Cardiol. 11, 183–190.PubMedCrossRefGoogle Scholar
  22. 22.
    Triulzi, D. J. and Nalesnik, M. A. (2001) Microchimerism, GVHD, and tolerance in solid organ transplantation. Transfusion 41, 419–426.PubMedCrossRefGoogle Scholar
  23. 23.
    Ichikawa, N., Demetris, A. J., Starzl, T. E., et al. (2000) Donor and recipient leukocytes in organ allografts of recipients with variable donor-specific tolerance: with particular reference to chronic rejection. Liver Transpl. 6, 686–702.PubMedCrossRefGoogle Scholar
  24. 24.
    Kashiwagi, N., Porter, K. A., Penn, I., et al. (1969) Studies of homograft sex and of gamma globulin phenotypes after orthotopic homotransplantation of the human liver. Surg. Forum 20, 374–376.PubMedGoogle Scholar
  25. 25.
    Starzl, T. E., Demetris, A. J., Trucco, M., et al. (1992) Systemic chimerism in human female recipients of male livers. Lancet 340, 876,877.CrossRefGoogle Scholar
  26. 26.
    Demetris, A. J., Murase, N., and Starzl, T. E. (1992) Donor dendritic cells after liver and heart allotransplantation under short-term immunosuppression. Lancet 339, 1610.CrossRefGoogle Scholar
  27. 27.
    Kocher, A. A., Schuster, M. D., Szabolcs, M. J., et al. (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat. Med. 7, 430–436.PubMedCrossRefGoogle Scholar
  28. 28.
    Taylor, D. A., Hruban, R., Rodriguez, E. R., et al. (2002) Cardiac chimerism as a mechanism for self-repair: does it happen and if so to what degree? Circulation 106, 2–4.PubMedCrossRefGoogle Scholar
  29. 29.
    Orlic, D., Kajstura, J., Chimenti, S., et al. (2001) Transplanted adult bone marrow cells repair myocardial infarcts in mice. Ann. NYAcad. Sci. 938, 221–229; discussion 229,230.CrossRefGoogle Scholar
  30. 30.
    Hasegawa, S., Becker, G., Nagano, H., et al. (1998) Pattern of graftand hostspecific MHC class II expression in long-term murine cardiac allografts: origin of inflammatory and vascular wall cells. Am. J. Pathol. 153, 69–79.PubMedCrossRefGoogle Scholar
  31. 31.
    Sata, M., Saiura, A., Kunisato, A., et al. (2002) Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat. Med. 8, 403–409.PubMedCrossRefGoogle Scholar
  32. 32.
    Shimizu, K., Sugiyama, S., Aikawa, M., et al. (2001) Host bone-marrow cells are a source of donor intimal smoothmuscle-like cells in murine aortic transplant arteriopathy. Nat. Med. 7, 738–741.PubMedCrossRefGoogle Scholar
  33. 33.
    Saiura, A., Sata, M., Hirata, Y., et al. (2001) Circulating smooth muscle progenitor cells contribute to atherosclerosis. Nat. Med. 7, 382,383.CrossRefGoogle Scholar
  34. 34.
    Arai, A. E., Pantely, G. A., Thoma, W. J., et al. (1992) Energy metabolism and contractile function after 15 beats of moderate myocardial ischemia. Circ. Res. 70, 1137–1145.PubMedGoogle Scholar
  35. 35.
    Pfeffer, J. M., Pfeffer, M. A., Fletcher, P. J., et al. (1991) Progressive ventricular remodeling in rat with myocardial infarction. Am. J. Physiol. 260, H1406–1414.PubMedGoogle Scholar
  36. 36.
    White, H. D., Norris, R. M., Brown, M. A., et al. (1987) Left ventricular endsystolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 76, 44–51.PubMedGoogle Scholar
  37. 37.
    Grogan, M., Redfield, M. M., Bailey, K. R., et al. (1995) Long-term outcome of patients with biopsy-proved myocarditis: comparison with idiopathic dilated cardiomyopathy. J. Am. Coll. Cardiol. 26, 80–84.PubMedCrossRefGoogle Scholar
  38. 38.
    Kehat, I., Kenyagin-Karsenti, D., Snir, M., et al. (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 108, 407–414.PubMedGoogle Scholar
  39. 39.
    Orlic, D., Kajstura, J., Chimenti, S., et al. (2001) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc. Natl. Acad. Sci. USA 98, 10,344–10,349.PubMedCrossRefGoogle Scholar
  40. 40.
    Beltrami, A. P., Urbanek, K., Kajstura, J., et al. (2001) Evidence that human cardiac myocytes divide after myocardial infarction. N. Engl. J. Med. 344, 1750–1757.PubMedCrossRefGoogle Scholar
  41. 41.
    Bittner, R. E., Schofer, C., Weipoltshammer, K., et al. (1999) Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice. Anat. Embryol. (Berl.) 199, 391–396.CrossRefGoogle Scholar
  42. 42.
    Min, J. Y., Yang, Y., Converso, K. L., et al. (2002) Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J. Appl. Physiol. 92, 288–296.PubMedCrossRefGoogle Scholar
  43. 43.
    Shake, J. G., Gruber, P. J., Baumgartner, W. A., et al. (2002) Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann. Thorac. Surg. 73, 1919–1925; discussion 1926.PubMedCrossRefGoogle Scholar
  44. 44.
    Barbash, I. M., Chouraqui, P., Baron, J., et al. (2003) Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 108, 863–868.PubMedCrossRefGoogle Scholar
  45. 45.
    Toma, C., Pittenger, M. F., Cahill, K. S., et al. (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105, 93–98.PubMedCrossRefGoogle Scholar
  46. 46.
    Orlic, D., Hill, J. M., and Arai, A. E. (2002) Stem cells for myocardial regeneration. Circ. Res. 91, 1092–1102.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Nana Rezai
    • 1
  • Hubert Walinski
    • 1
  • Alexandra Kerjner
    • 1
  • Lubos Bohunek
    • 1
  • Fabio M. V. Rossi
    • 2
  • Bruce M. McManus
    • 1
  • Thomas J. Podor
    • 1
  1. 1.The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Department of Pathology and Laboratory MedicineSt. Paul’s Hospital-University of British ColumbiaVancouver)(czBritish ColumbiaCanada
  2. 2.Biomedical Research Centre, Department of Medical GeneticsUniversity of British ColumbiaVancouver British ColumbiaCanada

Personalised recommendations