Skip to main content

Expressed Protein Ligation for Protein Semisynthesis and Engineering

  • Protocol
  • 1897 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 298))

Abstract

Over the past decade, a significant methodological development in peptide ligation strategies has been elaborated that now permits the assembly of peptides and proteins. Native chemical ligation (NCL) has been introduced to join synthetic unprotected peptides by using the chemoselective reaction between a C-terminal thioester and an N-terminal cysteine residue to result in a native peptide bond. Although this method has been applied to obtain peptides, small proteins, or protein domains (up to approx 150 residues), larger proteins could not been easily received because of the limited size of the ligated fragments. Intein technologies benefit from the opportunity to participate in the production of polypeptides with the reactive groups necessary for NCL aside from the rapid isolation of highly pure recombinant proteins. Expressed protein ligation extends the scope of NCL by overcoming the size limitation of target proteins accessible to synthesis. The intein splicing and EPL have been already proven to be useful for protein semisynthesis and for various investigations, including the studies of protein-protein interactions, segmental isotopic labeling for protein structure determination, synthesis of cytotoxic proteins, protein cyclization, and site-specific incorporation of noncanonical amino acids and biophysical probes into a protein sequence. Key Words: Expressed protein ligation (EPL); intein; protein engineering; protein splicing; purification tag.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kent, S. B. (1988) Chemical synthesis of peptides and proteins. Annu. Rev. Bio-chem. 57, 957–989.

    CAS  Google Scholar 

  2. Hackeng, T. M., Griffin, J. H., and Dawson, P. E. (1999) Protein synthesis by native chemical ligation: expanded scope by using straightforward methodology. Proc. Natl. Acad. Sci. USA 96, 10,068–10,073.

    Article  PubMed  CAS  Google Scholar 

  3. Thorson, J. S., Cornish, V. W., Barrett, J. E., Cload, S. T., Yano, T., and Schultz, P. G. (1998) A biosynthetic approach for the incorporation of unnatural amino acids into proteins. Methods Mol. Biol. 77, 43–73.

    PubMed  CAS  Google Scholar 

  4. Wang, L. and Schultz, P. G. (2002) Expanding the genetic code. Chem. Commun. 1–11.

    Google Scholar 

  5. Dawson, P. E., Muir, T. W., Clark-Lewis, I., and Kent, S. B. (1994) Synthesis of proteins by native chemical ligation. Science 266, 776–779.

    Article  PubMed  CAS  Google Scholar 

  6. Dawson, P. E. and Kent, S. B. (2000) Synthesis of native proteins by chemical ligation. Annu. Rev. Biochem. 69, 923–960.

    Article  PubMed  CAS  Google Scholar 

  7. Muir, T. W., Sondhi, D., and Cole, P. A. (1998) Expressed protein ligation: a general method for protein engineering. Proc. Natl. Acad. Sci. USA 95, 6705–6710.

    Article  PubMed  CAS  Google Scholar 

  8. Paulus, H. (2000) Protein splicing and related forms of protein autoprocessing. Annu. Rev. Biochem. 69, 447–496.

    Article  PubMed  CAS  Google Scholar 

  9. Chong, S., Mersha, F. B., Comb, D. G., et al. (1997) Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene 192, 271–281.

    Article  PubMed  CAS  Google Scholar 

  10. Severinov, K. and Muir, T. W. (1998) Expressed protein ligation, a novel method for studying protein-protein interactions in transcription. J. Biol. Chem. 273, 16,205–16,209.

    Article  PubMed  CAS  Google Scholar 

  11. Xu, R., Ayers, B., Cowburn, D., and Muir, T. W. (1999) Chemical ligation of folded recombinant proteins: segmental isotopic labeling of domains for NMR studies. Proc. Natl. Acad. Sci. USA 96, 388–393.

    Article  PubMed  CAS  Google Scholar 

  12. Otomo, T., Ito, N., Kyogoku, Y., and Yamazaki, T. (1999) NMR observation of selected segments in a larger protein: central-segment isotope labeling through intein-mediated ligation. Biochemistry 38, 16,040–16,044.

    Article  PubMed  CAS  Google Scholar 

  13. Otomo, T., Teruya, K., Uegaki, K., Yamazaki, T., and Kyogoku, Y. (1999) Improved segmental isotope labeling of proteins and application to a larger protein. J. Biomol. NMR 14, 105–114.

    Article  PubMed  CAS  Google Scholar 

  14. Wang, D. and Cole, P. A. (2001) Protein tyrosine kinase Csk-catalyzed phosphorylation of Src containing unnatural tyrosine analogues. J. Am. Chem. Soc. 123, 8883–8886.

    Article  PubMed  CAS  Google Scholar 

  15. Cotton, G. J. and Muir, T. W. (2000) Generation of a dual-labeled fluorescence biosensor for Crk-II phosphorylation using solid-phase expressed protein ligation. Chem. Biol. 7, 253–261.

    Article  PubMed  CAS  Google Scholar 

  16. Hofmann, R. M., Cotton, G. J., Chang, E. J., et al. (2001) Fluorescent monitoring of kinase activity in real time: development of a robust fluorescence-based assay for Abl tyrosine kinase activity. Bioorg. Med. Chem. Lett. 11, 3091–3094.

    Article  PubMed  CAS  Google Scholar 

  17. Camarero, J. A. and Muir, T. W. (1999) Biosynthesis of a head-to-tail cyclized protein with improved biological activity. J. Am. Chem. Soc. 121, 5597–5598.

    Article  CAS  Google Scholar 

  18. Camarero, J. A., Fushman, D., Cowburn, D., and Muir, T. W. (2001) Peptide chemical ligation inside living cells: in vivo generation of a circular protein domain. Bioorg. Med. Chem. 9, 2479–2484.

    Article  PubMed  CAS  Google Scholar 

  19. Evans, T. C. Jr., Benner, J., and Xu, M. Q. (1999) The cyclization and polymeri-zation of bacterially expressed proteins using modified self-splicing inteins. J. Biol. Chem. 274, 18,359–18,363.

    Article  PubMed  CAS  Google Scholar 

  20. Riggs, P. (2000) Expression and purification of recombinant proteins by fusion to maltose-binding protein. Mol. Biotechnol. 15, 51–63.

    Article  PubMed  CAS  Google Scholar 

  21. Smith, D.B. and Johnson, K. S. (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67, 31–40.

    Article  PubMed  CAS  Google Scholar 

  22. Pietrokovski, S. (1998) Modular organization of inteins and C-terminal autocatalytic domains. Protein Sci. 7, 64–71.

    Article  PubMed  CAS  Google Scholar 

  23. Xu, M. Q. and Perler, F. B. (1996) The mechanism of protein splicing and its modulation by mutation. Embo J. 15, 5146–5153.

    PubMed  CAS  Google Scholar 

  24. Chong, S., Shao, Y., Paulus, H., Benner, J., Perler, F. B., and Xu, M. Q. (1996) Protein splicing involving the Saccharomyces cerevisiae VMA intein. The steps in the splicing pathway, side reactions leading to protein cleavage, and establishment of an in vitro splicing system. J. Biol. Chem. 271, 22,159–22,168.

    Article  PubMed  CAS  Google Scholar 

  25. Xu, M. Q., Paulus, H., and Chong, S. (2000) Fusions to self-splicing inteins for protein purification. Methods Enzymol. 326, 376–418.

    Article  PubMed  CAS  Google Scholar 

  26. Watanabe, T., Ito, Y., Yamada, T., Hashimoto, M., Sekine, S., and Tanaka, H. (1994) The roles of the C-terminal domain and type III domains of chitinase A1 from Bacillus circulans WL-12 in chitin degradation. J. Bacteriol. 176, 4465–4472.

    PubMed  CAS  Google Scholar 

  27. Mathys, S., Evans, T. C., Chute, I. C., et al. (1999) Characterization of a selfsplicing mini-intein and its conversion into autocatalytic N-and C-terminal cleavage elements: facile production of protein building blocks for protein ligation. Gene 231, 1–13.

    Article  PubMed  CAS  Google Scholar 

  28. Ayers, B., Blaschke, U. K., Camarero, J. A., Cotton, G. J., Holford, M., and Muir, T. W. (1999) Introduction of unnatural amino acids into proteins using expressed protein ligation. Biopolymers 51, 343–354.

    Article  PubMed  CAS  Google Scholar 

  29. Southworth, M. W., Amaya, K., Evans, T. C., Xu, M. Q., and Perler, F. B. (1999) Purification of proteins fused to either the amino or carboxy terminus of the Myco-bacterium xenopi gyrase A intein. Biotechniques 27, 110–114, 116, 118-120.

    PubMed  CAS  Google Scholar 

  30. Evans, T. C. Jr., Benner, J., and Xu, M. Q. (1999) The in vitro ligation of bacterially expressed proteins using an intein from Methanobacterium thermoautotrophicum. J. Biol. Chem. 274, 3923–3926.

    Article  PubMed  CAS  Google Scholar 

  31. Cantor, E. J. and Chong, S. (2001) Intein-mediated rapid purification of Cre recombinase. Protein Expr. Purif. 22, 135–140.

    Article  PubMed  CAS  Google Scholar 

  32. Wieland, T., Bokelmann, E., Bauer, L., Lang, H. U., and Lau, H. (1953) Bildung von S-haltigen Peptiden durch intramolekulare Wanderung von Aminoacylresten. Annalen der Chemie 583, 129–149.

    CAS  Google Scholar 

  33. Tam, J. P., Lu, Y. A., Liu, C. F., and Shao, J. (1995) Peptide synthesis using unprotected peptides through orthogonal coupling methods. Proc. Natl. Acad. Sci. USA 92, 12,485–12,489.

    Article  PubMed  CAS  Google Scholar 

  34. Hondal, R. J., Nilsson, B. L., and Raines, R. T. (2001) Selenocysteine in native chemical ligation and expressed protein ligation. J. Am. Chem. Soc. 123, 5140–5141.

    Article  PubMed  CAS  Google Scholar 

  35. Marinzi, C., Bark, S. J., Offer, J., and Dawson, P. E. (2001) A new scaffold for amide ligation. Bioorg. Med. Chem. 9, 2323–2328.

    Article  PubMed  CAS  Google Scholar 

  36. Yan, L. Z. and Dawson, P. E. (2001) Synthesis of peptides and proteins without cysteine residues by native chemical ligation combined with desulfurization. J. Am. Chem. Soc. 123, 526–533.

    Article  PubMed  CAS  Google Scholar 

  37. Beligere, G. S. and Dawson, P. E. (1999) Conformationally assisted protein ligation using C-terminal thioester peptides. J. Am. Chem. Soc. 121, 6332–6333.

    Article  CAS  Google Scholar 

  38. Chong, S., Williams, K. S., Wotkowicz, C., and Xu, M. Q. (1998) Modulation of protein splicing of the Saccharomyces cerevisiae vacuolar membrane ATPase intein. J. Biol. Chem. 273, 10,567–10,577.

    Article  PubMed  CAS  Google Scholar 

  39. Corringer, P. J., Le Novere, N., and Changeux, J. P. (2000) Nicotinic receptors at the amino acid level. Annu. Rev. Pharmacol. Toxicol. 40, 431–458.

    Article  PubMed  CAS  Google Scholar 

  40. Brakch, N., Rist, B., Beck-Sickinger, A. G., et al. (1997) Role of prohormone convertases in pro-neuropeptide Y processing: coexpression and in vitro kinetic investigations. Biochemistry 36, 16,309–16,320.

    Article  PubMed  CAS  Google Scholar 

  41. Pohl, R. A., Machova, Z., Söll, R., Brakch, N., Grouzmann, E., and Beck-Sickinger, A.G. (2000) Pro-NPY and truncated analogues are substrates for prohormone convertase PC1/3. J. Pept. Sci. 6, S127.

    Google Scholar 

  42. Clark-Lewis, I., Schumacher, C., Baggiolini, M., andMoser, B. (1991) Structureactivity relationships of interleukin-8 determined using chemically synthesized analogs. Critical role of NH2-terminal residues and evidence for uncoupling of neutrophil chemotaxis, exocytosis, and receptor binding activities. J. Biol. Chem. 266,23,128–23,134.

    PubMed  CAS  Google Scholar 

  43. Trabi, M. and Craik, D. J. (2002) Circular proteins-no end in sight. Trends Bio. Chem. Sci. 27, 132–138.

    Article  CAS  Google Scholar 

  44. Li, P. and Roller, P. P. (2002) Cyclization strategies in peptide derived drug design. Curr. Top. Med. Chem. 2, 325–341.

    Article  PubMed  CAS  Google Scholar 

  45. Evans, T. C. Jr., Martin, D., Kolly, R., et al. (2000) Protein trans-splicing and cyclization by a naturally split intein from the dnaE gene of Synechocystis species PCC6803. J. Biol. Chem. 275, 9091–9094.

    Article  PubMed  CAS  Google Scholar 

  46. Iwai, H., Lingel, A., and Pluckthun, A. (2001) Cyclic green fluorescent protein produced in vivo using an artificially split PI-PfuI intein from Pyrococcus furiosus. J. Biol. Chem. 276, 16,548–16,554.

    Article  PubMed  CAS  Google Scholar 

  47. Scott, C. P., Abel-Santos, E., Wall, M., Wahnon, D. C., and Benkovic, S. J. (1999) Production of cyclic peptides and proteins in vivo. Proc. Natl. Acad. Sci. USA 96, 13,638–13,643.

    Article  PubMed  CAS  Google Scholar 

  48. Scott, C. P., Abel-Santos, E., Jones, A. D., and Benkovic, S. J. (2001) Structural requirements for the biosynthesis of backbone cyclic peptide libraries. Chem. Biol. 8, 801–815.

    Article  PubMed  CAS  Google Scholar 

  49. Siebold, C. and Erni, B. (2002) Intein-mediated cyclization of a soluble and a membrane protein in vivo: function and stability. Biophys. Chem. 96, 163–171.

    Article  PubMed  CAS  Google Scholar 

  50. Iwai, H. and Pluckthun, A. (1999) Circular beta-lactamase: stability enhancement by cyclizing the backbone. FEBS Lett. 459, 166–172.

    Article  PubMed  CAS  Google Scholar 

  51. Goto, N. K. and Kay, L. E. (2000) New developments in isotope labeling strategies for protein solution NMR spectroscopy. Curr. Opin. Struct. Biol. 10, 585–592.

    Article  PubMed  CAS  Google Scholar 

  52. Yamazaki, T., Otomo, T., Oda, N., et al. (1998) Segmental isotope labeling for protein NMR using peptide splicing. J. Am. Chem. Soc. 120, 5591–5592.

    Article  CAS  Google Scholar 

  53. Cowburn, D. and Muir, T. W. (2001) Segmental isotopic labeling using expressed protein ligation. Methods Enzymol. 339, 41–54.

    Article  PubMed  CAS  Google Scholar 

  54. Blaschke, U. K., Cotton, G. J., and Muir, T. W. (2000) Synthesis of multi-domain proteins using expressed protein ligation: Strategies for segmental isotopic label-ing of internal regions. Tetrahedron 56, 9461–9470.

    Article  CAS  Google Scholar 

  55. Evans, T. C. Jr., Benner, J., and Xu, M. Q. (1998) Semisynthesis of cytotoxic proteins using a modified protein splicing element. Protein Sci. 7, 2256–2264.

    Article  PubMed  CAS  Google Scholar 

  56. Burke, T. R. Jr. and Zhang, Z. Y. (1998) Protein-tyrosine phosphatases: structure, mechanism, and inhibitor discovery. Biopolymers 47, 225–241.

    Article  PubMed  CAS  Google Scholar 

  57. Cole, P. A., Sondhi, D., and Kim, K. (1999) Chemical approaches to the study of protein tyrosine kinases and their implications for mechanism and inhibitor design. Pharmacol. Ther. 82, 219–229.

    Article  PubMed  CAS  Google Scholar 

  58. Cotton, G. J., Ayers, B., Xu, R., and Muir, T. W. (1999) Insertion of a synthetic peptide into a recombinant protein framework: a protein biosensor. J. Am. Chem. Soc. 121, 1100–1101.

    Article  CAS  Google Scholar 

  59. Lu, W., Gong, D., Bar-Sagi, D., and Cole, P. A. (2001) Site-specific incorporation of a phosphotyrosine mimetic reveals a role for tyrosine phosphorylation of SHP-2 in cell signaling. Mol. Cell 8, 759–769.

    Article  PubMed  CAS  Google Scholar 

  60. Zhang, A., Gonzalez, S. M., Cantor, E. J., and Chong, S. (2001) Construction of a mini-intein fusion system to allow both direct monitoring of soluble protein expression and rapid purification of target proteins. Gene 275, 241–252.

    Article  PubMed  CAS  Google Scholar 

  61. Chalfie, M. (1995) Green fluorescent protein. Photochem. Photobiol. 62, 651–656.

    Article  PubMed  CAS  Google Scholar 

  62. Ozawa, T., Nogami, S., Sato, M., Ohya, Y., and Umezawa, Y. (2000) A fluorescent indicator for detecting protein-protein interactions in vivo based on protein splicing. Anal. Chem. 72, 5151–5157.

    Article  PubMed  CAS  Google Scholar 

  63. Ozawa, T., Takeuchi, T. M., Kaihara, A., Sato, M., and Umezawa, Y. (2001) Protein splicing-based reconstitution of split green fluorescent protein for monitoring protein-protein interactions in bacteria: improved sensitivity and reduced screen-ing time. Anal. Chem. 73, 5866–5874.

    Article  PubMed  CAS  Google Scholar 

  64. Ozawa, T., Kaihara, A., Sato, M., Tachihara, K., and Umezawa, Y. (2001) Split luciferase as an optical probe for detecting protein-protein interactions in mam-malian cells based on protein splicing. Anal. Chem. 73, 2516–2521.

    Article  PubMed  CAS  Google Scholar 

  65. Machova, Z., Muhle, C., Krauss, U., et al. (2002) Cellular internalization of enhanced green fluorescent protein ligated to a human calcitonin-based carrier peptide. ChemBioChem 3, 672–677.

    Article  PubMed  CAS  Google Scholar 

  66. Berry, S. M., Gieselman, M. D., Nilges, M. J., van Der Donk, W.A., and Lu, Y. (2002) An engineered azurin variant containing a selenocysteine copper ligand. J. Am. Chem. Soc. 124, 2084–2085.

    Article  PubMed  CAS  Google Scholar 

  67. Cerovsky, V. and Bordusa, F. (2000) Protease-catalyzed fragment condensation via substrate mimetic strategy: a useful combination of solid-phase peptide synthesis with enzymatic methods. J. Pept. Res. 55, 325–329.

    Article  PubMed  CAS  Google Scholar 

  68. David, R., Machova, Z., and Beck-Sickinger, A. G. (2003) Semisynthesis and application of carboxyfluorescein-labeled biologically active human interleukin-8. Biol. Chem. 384, 1619–1630.

    Article  PubMed  CAS  Google Scholar 

  69. von Eggelkraut-Gottanka, R., Machova, Z., Grouzmann, E., Beck-Sickinger, A G. (2003) Semisynthesis and characterisation of the first analogues of pro-neuropeptide Y. ChemBioChem. 4, 425–433.

    Article  Google Scholar 

  70. Machova, Z., von Eggelkraut-Gottanka, R., Wehofsky, N., Bordusa, F., and Beck-Sickinger, A. G. (2003) Expressed enzymatic ligation: a new approach for the synthesis of chemically modified proteins, Angew. Chem. Int. Ed. 42, 4916–4918.

    Article  CAS  Google Scholar 

  71. David, R., Richter, M. P. O., and Beck-Sickinger, A. G. (2004) Expressed protein ligation: methods and applications. Eur. J. Biochem. 271, 663–677.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Machova, Z., Beck-Sickinger, A.G. (2005). Expressed Protein Ligation for Protein Semisynthesis and Engineering. In: Howl, J. (eds) Peptide Synthesis and Applications. Methods in Molecular Biology™, vol 298. Humana Press. https://doi.org/10.1385/1-59259-877-3:105

Download citation

  • DOI: https://doi.org/10.1385/1-59259-877-3:105

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-317-6

  • Online ISBN: 978-1-59259-877-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics