High-Throughput Peptide Synthesis

  • Michal Lebl
  • John Hachmann
Part of the Methods in Molecular Biology™ book series (MIMB, volume 298)

Abstract

The methodologies of high-throughput peptide synthesis are overviewed and discussed. Particular focus is given to the techniques applicable to laboratories with a limited budget. Automated solutions for synthetic problems are also discussed.

Key Words

Automation parallel synthesis solid phase synthesis manual synthesizer centrifugation review 

References

  1. 1.
    Lander, E. S., Linton, L. M., Birren, B., et al. (2001) Initial sequencing and analysis of the human genome. Nature 409, 860.PubMedCrossRefGoogle Scholar
  2. 2.
    Venter, J. C., Adams, M. D., Myers, E. W., et al. (2001) The sequence of the human genome. Science 291, 1304.PubMedCrossRefGoogle Scholar
  3. 3.
    Aebersold, R. (2003) Constellations in a cellular universe. Nature 422,115–117.PubMedCrossRefGoogle Scholar
  4. 4.
    Turecek, F. (2002) Mass spectrometry in coupling with affinity capture-release and isotope-coded affinity tags for quantitative protein analysis. J. Mass Spectrom. 37, 1–14.PubMedCrossRefGoogle Scholar
  5. 5.
    Merrifield, R. B. (1963) Solid phase peptide synthesis. I. The synthesis of a tetra-peptide. J. Amer. Chem. Soc. 85, 2149–2154.CrossRefGoogle Scholar
  6. 6.
    Merrifield, R. B. (1985) Solid phase synthesis (Nobel lecture). Angew. Chem. Int. Ed. 24, 79–810.Google Scholar
  7. 7.
    Merrifield, R. B. (1986) Solid phase peptide synthesis. Science 232, 341–347.PubMedCrossRefGoogle Scholar
  8. 8.
    Merrifield, R. B. (1993) Life During a Golden Age of Peptide Chemistry: The Concept and Development of Solid-Phase Peptide Synthesis. American Chemi-cal Society, Washington, DC, pp. 1–297.Google Scholar
  9. 9.
    Merrifield, B. (1997) Concept and early development of solid-phase peptide synthesis. Methods Enzymol. 289, 3–13.PubMedCrossRefGoogle Scholar
  10. 10.
    Lam, K. S., Salmon, S. E., Hersh, E. M., Hruby, V. J., Kazmierski, W. M., and Knapp, R. J. (1991) A new type of synthetic peptide library for identifying ligand-binding activity. Nature 354, 82–84.PubMedCrossRefGoogle Scholar
  11. 11.
    Lam, K. S., Lebl, M., and Krchnak, V. (1997) The /ldone-bead one-compound/rd combinatorial library method. Chem. Rev. 97, 411–448.PubMedCrossRefGoogle Scholar
  12. 12.
    Valerio, R. M., Bray, A. M., Campbell, R. A., et al. (1993) Multipin peptide synthesis at the micromole scale using 2-hydroxyethyl methacrylate grafted polyethylene supports. Int. J. Peptide Prot. Res. 42, 1–9.CrossRefGoogle Scholar
  13. 13.
    Geysen, H. M., Meloen, R. H., and Barteling, S. J. (1984) Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc. Natl. Acad. Sci. USA 81, 3998–4002.PubMedCrossRefGoogle Scholar
  14. 14.
    Bray, A. M., Maeji, N. J., and Geysen, H. M. (1990) The simultaneous multiple production of solution phase peptides; assesment of the Geysen method of simul-taneous peptide synthesis. Tetrahedron Lett. 31, 5811–5814.CrossRefGoogle Scholar
  15. 15.
    Maeji, N. J., Valerio, R. M., Bray, A. M., Campbell, R. A., and Geysen, H. M. (1994) Grafted supports used with the multipin method of peptide synthesis. React. Polym. 22, 203–212.CrossRefGoogle Scholar
  16. 16.
    Carter, J. M., VanAlbert, S., Lee, J., Lyon, J., and Deal, C. (1992) Shedding light on peptide synthesis. Biotechnology 10, 509–513.PubMedCrossRefGoogle Scholar
  17. 17.
    Rasoul, F., Ercole, F., Pham, Y., et al. (2000) Grafted supports in solid-phase synthesis. Biopolymers (Pept. Sci.) 55, 207–216.CrossRefGoogle Scholar
  18. 18.
    Houghten, R. A. (1985) General method for the rapid solid-phase synthesis of large numbers of peptides: Specificity of antigen-antibody interaction at the level of individual amino acids. Proc. Natl. Acad. Sci. USA 82, 5131–5135.PubMedCrossRefGoogle Scholar
  19. 19.
    Houghten, R. A., DeGraw, S. T., Bray, M. K., Hoffmann, S. R., and Frizzell, N. D. (1986) Simultaneous multiple peptide synthesis: The rapid preparation of large numbers of discrete peptides for biological, immunological, and methodological studies. BioTechniques 4, 522–528.CrossRefGoogle Scholar
  20. 20.
    Xiao, X., Zhao, C., Potash, H., and Nova, M. P. (1997) Combinatorial chemistry with laser optical encoding. Angew. Chem. Int. Ed. 36, 780–782.CrossRefGoogle Scholar
  21. 21.
    Nicolaou, K. C., Xiao, X. Y., Parandoosh, Z., Senyei, A., and Nova, M. P. (1995) Radiofrequency encoded combinatorial chemistry. Angew. Chem. Int. Ed. 34, 2289–2291.CrossRefGoogle Scholar
  22. 22.
    Moran, E. J., Sarshar, S., Cargill, J. F., et al. (1995) Radio frequency tag encoded combinatorial library method for the discovery of tripeptide-substituted cinnamic acid inhibitors of the protein tyrosine phosphatase PTP1B. J. Amer. Chem. Soc. 117, 10787–10788.CrossRefGoogle Scholar
  23. 23.
    Houghten, R. A., Bray, M. K., DeGraw, S. T., and Kirby, C. J. (1986) Simplified procedure for carrying out simultaneous hydrogen fluoride cleavages of protected peptide resins. Int. J. Peptide Prot. Res. 27, 673–678.CrossRefGoogle Scholar
  24. 24.
    Kerschen, A., Kanizsai, A., Botros, I., and Krchnak, V. (1999) Apparatus and method for cleavage of compounds from solid support by gaseous reagents. J. Comb. Chem. 1, 480–484.CrossRefGoogle Scholar
  25. 25.
    Lebl, M., Pires, J., Poncar, P., and Pokorny, V. (1999) Evaluation of gaseous hydrogen fluoride as a convenient reagent for parallel cleavage from the solid support. J. Comb. Chem. 1, 474–479.PubMedCrossRefGoogle Scholar
  26. 26.
    Lebl, M., Krchnak, V., Ibrahim, G., et al. (1999) Solid-phase synthesis of large tetrahydroisoquinolinone arrays by two different approaches. Synthesis-Stuttgart 1971–1978.Google Scholar
  27. 27.
    Blankemeyer-Menge, B. and Frank, R. (1988) Simultaneous multiple synthesis of protected peptide fragments on allyl-functionalized cellulose disc supports. Tetrahedron Lett. 29, 5871–5874.CrossRefGoogle Scholar
  28. 28.
    Frank, R. and Doring, R. (1988) Simultaneous multiple peptide synthesis under continuous flow conditions on cellulose paper discs as segmental solid supports. Tetrahedron 44, 6031–6040.CrossRefGoogle Scholar
  29. 29.
    Frank, R., Heikens, W., Heisterberg-Moutsis, G., and Blocker, H. (1983) A new general approach for the simultaneous chemical synthesis of large numbers of oligonucleotides: Segmental solid supports. Nucl. Acid. Res. 11, 4365–4377.CrossRefGoogle Scholar
  30. 30.
    Dittrich, F., Tegge, W., and Frank, R. (1998) “Cut and combine”: An easy membrane-supported combinatorial synthesis technique. Bioorg. Med. Chem. Lett. 8, 2351–2356.PubMedCrossRefGoogle Scholar
  31. 31.
    Eichler, J., Bienert, M., Stierandova, A., and Lebl, M. (1991) Evaluation of cotton as a carrier for solid phase peptide synthesis. Peptide Res. 4, 296–307.Google Scholar
  32. 32.
    Jezek, J., Rinnova, M., and Lebl, M. (1993) Simultaneous multiple peptide synthesis: Comparison of T-bags and cotton. In Peptides 1992, Proc.22.EPS (Schneider, C. H. and Eberle, A. N., eds.), ESCOM, Leiden, pp. 306–307.Google Scholar
  33. 33.
    Lebl, M. and Eichler, J. (1989) Simulation of continuous solid phase synthesis: Synthesis of methionine enkephalin and its analogs. Peptide Res. 2, 297–300.Google Scholar
  34. 34.
    Lebl, M. (1998) Solid-phase synthesis on planar supports. Biopolymers (Pept. Sci.) 47, 397–404.CrossRefGoogle Scholar
  35. 35.
    Stankova, M., Wade, S., Lam, K. S., and Lebl, M. (1994) Synthesis of combinatorial libraries with only one representation of each structure. Peptide Res. 7, 292–298.Google Scholar
  36. 36.
    Frank, R. (1992) SPOT synthesis: An easy technique for the positionally addres-sable, parallel chemical synthesis on a membrane support. Tetrahedron 48,9217–9232.CrossRefGoogle Scholar
  37. 37.
    Frank, R. and Overwin, H. (1996) SPOT synthesis. Epitope analysis with arrays of synthetic peptides prepared on cellulose membranes. Methods Mol. Biol. 66, 149–169.PubMedGoogle Scholar
  38. 38.
    Frank, R., Hoffmann, S., Kiess, M., et al. (1996) Combinatorial synthesis on membrane supports by the SPOT technique: Imaging peptide sequence and shape space. In Combinatorial Peptide and Nonpeptide Libraries: A Handbook (Jung, G., ed.), VCH, Weinheim, Germany, pp. 363–386.CrossRefGoogle Scholar
  39. 39.
    Wenschuh, H., Volkmer-Engert, R., Schmidt, M., Schulz, M., Schneider-Mergener, J., and Reineke, U. (2000) Coherent membrane supports for parallel microsynthesis and screening of bioactive peptides. Biopolymers (Pept. Sci.) 55, 188–206.CrossRefGoogle Scholar
  40. 40.
    Koch, J. and Mahler, M., Eds. (2002) Peptide Arrays on Membrane Supports. Springer, Berlin.Google Scholar
  41. 41.
    Eichler, J., Houghten, R. A., and Lebl, M. (1996) Inclusion volume solid-phase peptide synthesis. J. Peptide Sci. 2, 240–244.CrossRefGoogle Scholar
  42. 42.
    Krchnak, V., Weichsel, A. S., Lebl, M., and Felder, S. (1997) Automated solidphase organic synthesis in micro-plate wells. Synthesis of N-(alkoxy-acyl)amino alcohols. Bioorg. Med. Chem. Lett. 7, 1013–1016.CrossRefGoogle Scholar
  43. 43.
    Wolfe, H. R. and Wilk, R. R. (1989) The RaMPS system: Simplified peptide synthesis for life science researchers. Peptide Res. 2, 352–356.Google Scholar
  44. 44.
    Krchnak, V., Vagner, J., Flegel, M., and Mach, O. (1987) Continuous-flow solidphase peptide synthesis. Tetrahedron Lett. 28, 4469–4472. CrossRefGoogle Scholar
  45. 45.
    Krchnak, V., Vagner, J., and Mach, O. (1989) Multiple continuous-flow solidphase peptide synthesis. Synthesis of an HIV antigenic peptide and its omission analogues. Int. J. Peptide Prot. Res. 33, 209–213.CrossRefGoogle Scholar
  46. 46.
    Krchnak, V. and Vagner, J. (1990) Color-monitored solid-phase multiple pep tide synthesis under low-pressure continuous flow conditions. Peptide Res. 3, 182–193.Google Scholar
  47. 47.
    Vagner, J., Kocna, P., and Krchnak, V. (1991) Continuous-flow synthesis of a gliadin peptides in an ultrasonic field and assay of their inhibition of intestinal sucrase activity. Peptide Res. 4, 284–288.Google Scholar
  48. 48.
    Krchnak, V. and Vagner, J. (1992) Prediction and handling of difficult sequences in solid-phase peptide synthesis. In Innovation and Perspectives in Solid Phase Synthesis. (Epton, R., ed.), Intercept, Andover,UK, pp. 414–415.Google Scholar
  49. 49.
    Lebl, M. and Krchnak, V. (1997) Synthetic peptide libraries. Methods Enzymol. 289, 336–392.PubMedCrossRefGoogle Scholar
  50. 50.
    Baru, M. B., Cherskii, V. V., Danilov, A. V., Moshnikov, S. A., and Mustaeva, L. G. (1995) Automatic SynChrom system for solid phase peptide synthesis and liquid column chromatography. II. Application to solid phase peptide synthesis and liquid column chromatography. Russ. J. Bioorch. Chem. 21, 506–516.Google Scholar
  51. 51.
    Baru, M. B., Cherskii, V. V., Danilov, A. V., Moshnikov, S. A., and Mustaeva, L. G. (1995) Automatic SynChrom system for solid phase peptide synthesis and liquid column chromatography. I. Principles of design and structural constitu-ents. Russ. J. Bioorch. Chem. 21, 498–505.Google Scholar
  52. 52.
    Baru, M. B., Mustaeva, L. G., Vagenina, I. V., Gorbunova, E. Y., and Cherskii, V. V. (2001) Pressure monitoring of continuous-flow solid-phase peptide synthesis. J. Pept. Res. 57, 193–202.PubMedCrossRefGoogle Scholar
  53. 53.
    Rodionov, I. L., Baru, M. B., and Ivanov, V. T. (1992) A swellographic approach to monitoring continuous-flow solidphase peptide synthesis. Peptide Res. 5, 119–125.Google Scholar
  54. 54.
    Krchnak, V., Vagner, J., Safar, P., and Lebl, M. (1988) Noninvasive continuous monitoring of solid phase peptide synthesis by acid-base indicator. Collect. Czech. Chem. Commun. 53, 2542–2548.CrossRefGoogle Scholar
  55. 55.
    Krchnak, V. and Padera, V. (1998) The domino blocks: A simple solution for parallel solid-phase organic synthesis. Bioorg. Med. Chem. Lett. 8, 3261–3264.PubMedCrossRefGoogle Scholar
  56. 56.
    Mjalli, A. M. M. and Toyonaga, B. E. (1995) Solid support combinatorial chem istry in lead discovery and SAR optimization; http://www.netsci.org/Science/ Combichem/feature03.html. Net. Sci. 1.Google Scholar
  57. 57.
    Lebl, M., Pokorny, V., and Krchnak, V. (2000) Apparatus and method for combinatorial chemistry synthesis. Trega Biosciences, Inc. San Diego, CA. US Patent 6,045,755. Lebl, M. and Krchnak, V. (2004) J. Comb. Chem. (in press).Google Scholar
  58. 58.
    Merrifield, R. B., Stewart, J. M., and Jernberg, N. (1966) Instrument for auto mated synthesis of peptides. Anal. Chem. 38, 1905–1914.PubMedCrossRefGoogle Scholar
  59. 59.
    Merrifield, R. B. and Stewart, J. M. (1965) Automated peptide synthesis. Nature 207, 522–523.PubMedCrossRefGoogle Scholar
  60. 60.
    Brunfeldt, K. (1973) Automation in solid phase peptide synthesis. In Peptides 1972, Proc.12.EPS (Hanson, H. and Jakubke, H. D., eds.), North-Holland Pub lishing Company, Amsterdam, pp. 141–151.Google Scholar
  61. 61.
    Birr, C. (1978) Automatization of the Merrifield peptide synthesis. In Aspects of the Merrifield Peptide Synthesis (Birr, C., ed.), Springer-Verlag, Berlin; New York, pp. 72–80.CrossRefGoogle Scholar
  62. 62.
    Edelstein, M. S., McNair, D. S., and Sparrow, J. T. (1981) The conversion of solid phase peptide synthesizers to computer control. In Peptides: Synthesis, Struc ture, Function (Rich, D. H. and Gross, E., eds.), Pierce Chemical Company, Rockford, IL, pp. 217–220.Google Scholar
  63. 63.
    Jonczyk, A. and Meienhofer, J. (1983) Automated flow reactor synthesizer for fast synthesis of peptides using Fmoc protection. In Peptides: Structure and Func tion, Proc.8.APS (Hruby, V. J. and Rich, D. H., eds.), Pierce Chemical Company, Rockford, IL, pp. 73–77.Google Scholar
  64. 64.
    Blaha, I., Zaoral, M., Krchnak, V., Jehnicka, J., Stepanek, J., and Kalousek, J. (1986) Automatic device for solid-phase peptide synthesis. Chem. Listy 80, 994.Google Scholar
  65. 65.
    Cameron, L. R., Holder, J. L., Meldal, M., and Sheppard, R. C. (1988) Peptide synthesis. Part 13. Feedback control in solid phase synthesis. Use of fluorenylmethoxycarbonyl amino acid 3,4-dihydro-4-oxo-1,2,3-benzotriazin-3-yl esters in a fully automated system. J. Chem. Soc. Perkin Trans. 1, 2895–2901.CrossRefGoogle Scholar
  66. 66.
    Geiser, T., Beilan, H., Bergot, B. J., and Otteson, K. M. (1988) Automation of solid-phase peptide synthesis. In Macromolecular Sequencing and Synthesis: Selected Methods and Applications (Schlesinger, D. H., ed.), Alan R. Liss, New York, pp. 199–218.Google Scholar
  67. 67.
    Newton, R., Fox, J. E., and Mizrahi, A. (1988) Automation of peptide synthesis. Synt. Peptide. Biotechnol. 1–24.Google Scholar
  68. 68.
    Bridgham, J., Geiser, T. G., Hunkapiller, M. W., et al. (1989). Automated polypeptide synthesis process. Applied Biosystems, Inc. Foster City, CA. US Patent 4,816,513.Google Scholar
  69. 69.
    Kearney, T. and Giles, J. (1989) Fmoc peptide synthesis with a continuous flow synthesizer. Amer. Biotechnol. Lab. 7, 34–44. Google Scholar
  70. 70.
    Schnorrenberg, G. and Gerhardt, H. (1989) Fully automatic simultaneous mul tiple peptide synthesis in micromolar scale: Rapid synthesis of series of peptides for screening in biological assays. Tetrahedron 45, 7759–7764.CrossRefGoogle Scholar
  71. 71.
    Gausepohl, H., Kraft, M., Boulin, C., and Frank, R. W. (1990) A robotic worksta tion for automated multiple peptide synthesis. In Innovations and Perspectives in Solid Phase Synthesis (Epton, R., ed.), SPCC, Birmingham, UK, pp. 487–490.Google Scholar
  72. 72.
    Judd, A. K. (1991) Multiple polymer synthesizer. SRI International, Menlo Park, CA. US Patent 5,053,454.Google Scholar
  73. 73.
    Schnorrenberg, G., Wiesmuller, K. H., Beck-Sickinger, A. G., Drechsel, H., and Jung, G. (1991) Rapid fully automatic SMPS for epitope mapping of influenza nucleoprotein. In Peptides 90, Proc.21.EPS (Giralt, E. and Andreu, D., eds.), ESCOM, Leiden, pp. 202–203.Google Scholar
  74. 74.
    Fox, J. E. (1992) Automatic multiple peptide synthesis. Biochem. Soc. Trans. 20, 851–853.PubMedGoogle Scholar
  75. 75.
    Gausepohl, H., Boulin, C., Kraft, M., and Frank, R. W. (1992) Automated mul tiple peptide synthesis. Peptide Res. 5, 315–320.Google Scholar
  76. 76.
    Lebl, M., Stierandova, A., Eichler, J., et al. (1992) An automated multiple solid phase peptide synthesizer utilizing cotton as a carrier. In Innovation and Per spectives in Solid Phase Peptide Synthesis (Epton, R., ed.), Intercept Limited, Andover, UK, pp. 251–257.Google Scholar
  77. 77.
    Nokihara, K., Yamamoto, R., Hazama, M., Wakizawa, O., and Nakamura, S. (1992) Design and applications of a novel simultaneous multiple solid phase pep tide synthesizer. In Innovation and Perspectives in Solid Phase Peptide Synthe sis (Epton, R., ed.), Intercept Limited, Andover, UK, pp. 445–448.Google Scholar
  78. 78.
    Zuckermann, R. N., Siani, M.A., and Banville, S. C. (1992) Control of the zymate robot with an external computer: Construction of a multiple peptide synthesizer. Lab. Robotics Automation 4, 183–192.Google Scholar
  79. 79.
    Bridgham, J., Geiser, T., Hunkapiller, M. W., et al. (1993). Automated polypeptide synthesis apparatus. Applied Biosystems, Inc. Foster City, CA. US Patent 5,186,898.Google Scholar
  80. 80.
    Neimark, J. and Briand, J. P. (1993) Development of a fully automated multi channel peptide synthesizer with integrated TFA cleavage capability. Peptide Res. 6, 219–228.Google Scholar
  81. 81.
    Saneii, H. H., Shannon, J. D., Miceli, R. M., Fischer, H. D., and Smith, C. W. (1994) Fully automated selection and synthesis of peptide libraries. In Peptides: Chemistry, Structure and Biology, Proc.13.APS (Hodges, R. S. and Smith, J. A., eds.), ESCOM, Leiden, pp. 1018–1020.Google Scholar
  82. 82.
    Saneii, H. H. and Shannon, J. D. (1994) Fully automated solid phase synthesis of combinatorial libraries on the peptide librarian. In Innovation and Perspectives in Solid Phase Synthesis (Epton, R., ed.), Intercept, Andover, UK, pp. 335–338.Google Scholar
  83. 83.
    Chang, H. W. and Slavazza, D. M. (1995) Solid phase peptide synthesizer. US Patent 5,453,487.Google Scholar
  84. 84.
    Nokihara, K., Hazama, M., Yamamoto, R., and Nakamura, S. (1995) Simulta neous multiple chemical synthesizer. Shimadzu Corporation, Kyoto Japan. US Patent 5,395,594.Google Scholar
  85. 85.
    Boutin, J. A. and Fauchere, J. L. (1996) Second-generation robotic synthesizer for peptide, pseudopeptide and non-peptide libraries. In Proceedings of the Inter national Symposium on Laboratory Automation and Robotics 1995 (Little, J. N., ONeil, C., and Strimaitis, J. R., eds.), Zymark Corp., Hopkinton, MA, pp. 197–210.Google Scholar
  86. 86.
    Krchnak, V., Cabel, D., and Lebl, M. (1996) MARS: Multiple automated robotic synthesizer for continuous flow of peptides. Peptide Res. 9, 45–49.Google Scholar
  87. 87.
    Daniels, S. B., Hantman, S. F., Sole, N. A., Gibney, B. R., Rabanal, F., and Kates, S. A. (1998) Pioneer(TM): A continuous-flow peptide synthesis system. In Peptides 1996: Proceedings of the Twenty-Fourth European Peptide Symposium (Ramage, R. and Epton, R., eds.), Mayflower Scientific Ltd., Kingswinford, UK, pp. 323–324.Google Scholar
  88. 88.
    Carpino, L. A. and Han, G. Y. (1970) The 9-fluorenylmethoxycarbonyl function, a new base-sensitive aminoprotecting group. J. Amer. Chem. Soc. 92,5748–5749.CrossRefGoogle Scholar
  89. 89.
    Atherton, E. and Sheppard, R. C. (1989) Solid Phase Peptide Synthesis: A Practical Approach, IRL Press at Oxford University Press, Oxford; New York, pp. 1–203.Google Scholar
  90. 90.
    Dryland, A. and Sheppard, R. C. (1986) Peptide synthesis. Part 8. A system for solid-phase synthesis under low pressure continuous flow conditions. J. Chem. Soc. Perkin Trans. 1, 125–137.CrossRefGoogle Scholar
  91. 91.
    Cargill, J. F. and Lebl, M. (1997) New methods in combinatorial chemistry: Robotics and parallel synthesis. Curr. Opin. Chem. Biol. 1, 67–71.PubMedCrossRefGoogle Scholar
  92. 92.
    Gooding, O., Hoeprich, P. D. Jr., Labadie, J. W., Porco, J. A. Jr., van Eikeren, P., and Wright, P. (1996) Boosting the productivity of medicinal chemistry through automation tools: Novel technological developments enable a wide range of auto mated synthetic procedures. In Molecular Diversity and Combinatorial Chemis try. Libraries and Drug Discovery (Chaiken, I. M. and Janda, K. D., eds.), American Chemical Society, Washington, DC, pp. 199–206.Google Scholar
  93. 93.
    Zinsser, W. (2000) SOPHAS-A real high throughput synthesizer. In Innovation and Perspectives in Solid Phase Synthesis (Epton, R., ed.), Mayflower World wide, Kingswinford, UK, pp. 61–66.Google Scholar
  94. 94.
    Zinsser, W. (2002) Workbench automation in synthesis: From preparation to final substance. In Innovation and Perspectives in Solid Phase Synthesis (Epton, R., ed.), Mayflower Worldwide, Kingswinford, UK, pp. 67–78.Google Scholar
  95. 95.
    Bartak, Z., Bolf, J., Kalousek, J., et al. (1994) Design and construction of the auto matic peptide library synthesizer. Methods: A Companion to Methods in Enzymology 6, 432–437.CrossRefGoogle Scholar
  96. 96.
    Boutin, J. A., Hennig, P., Lambert, P. H., et al. (1996) Combinatorial peptide libraries: Robotic synthesis and analysis by nuclear magnetic resonance, mass spectrometry, tandem mass spectrometry, and high-performance capillary elec trophoresis techniques. Anal. Biochem. 234, 126–141.PubMedCrossRefGoogle Scholar
  97. 97.
    Zuckermann, R. N., Kerr, J. M., Siani, M. A., and Banville, S. C. (1992) Design, construction and application of a fully automated equimolar peptide mixture syn thesizer. Int. J. Peptide Prot. Res. 40, 497–506.CrossRefGoogle Scholar
  98. 98.
    Zuckermann, R. N. and Banville, S. C. (1992) Automated peptide-resin deprotec tion/cleavage by a robotic workstation. Peptide Res. 5, 169–174.Google Scholar
  99. 99.
    Lebl, M., Pokorny, V., and Krchnak, V. (2000) Apparatus and method for com binatorial chemistry synthesis. Trega Biosciences, Inc. San Diego, CA. US Patent 6,045,755.Google Scholar
  100. 100.
    Lebl, M. and Krchnak, V. (1999) Techniques for massively parallel synthesis of small organic molecules. In Innovation and Perspectives in Solid Phase Synthe sis & Combinatorial Libraries (Epton, R., ed.), Mayflower Scientific Limited, Birmingham, UK, pp. 43–46. Google Scholar
  101. 101.
    Lebl, M. (2003) Centrifugation based automated synthesis technologies. J. Assoc. Lab. Autom. 8, 30–36.CrossRefGoogle Scholar
  102. 102.
    Pokorny, V., Mudra, P., Jehnicka, J., et al. (1994) Compas 242. New type of mul tiple peptide synthesizer utilizing cotton and tea bag technology. In Innovation and Perspectives in Solid Phase Synthesis (Epton, R., ed.), Mayflower World wide Limited, Birmingham, UK, pp. 643–648.Google Scholar
  103. 103.
    Bolf, J., Eichler, J., Jehnicka, J., et al. (1993) Multiple synthesis of peptide(s) on solid carrier. Ceskoslovenska Akademie Ved, UOCHB Prague CR. CS US Patent 5,202,418; 5,338,831; 5,342,585.Google Scholar
  104. 104.
    Lebl, M. (2000) Method for separation of liquid and solid phases for solid phase organic syntheses. Trega Biosciences, Inc. San Diego, CA. US Patent 6,121,054.Google Scholar
  105. 105.
    Lebl, M. (1999) New technique for high-throughput synthesis. Bioorg. Med. Chem. Lett. 9, 1305–1310.PubMedCrossRefGoogle Scholar
  106. 106.
    Studer, A. and Curran, D. P. (1997) A strategic alternative to solid phase synthe sis: Preparation of a small isoxazoline library by “fluorous synthesis.” Tetra hedron 53, 6681–6696.CrossRefGoogle Scholar
  107. 107.
    Lebl, M., Burger, C., Ellman, B., et al. (2001) Fully automated parallel oligonucleotide synthesizer. Collect. Czech. Chem. Commun. 66, 1299–1314.CrossRefGoogle Scholar
  108. 108.
    Adler, F., Turk, G., Frank, R., et al. (2000) A new array format for the automated parallel combinatorial synthesis by the SPOT-technique. In Innovation and Per spectives in Solid Phase Synthesis (Epton, R., ed.), Mayflower Worldwide, Kingswinford, UK, pp. 221–222.Google Scholar
  109. 109.
    Fodor, S. P. A., Leighton, R. J., Pirrung, M. C., Stryer, L., Lu, A. T., and Solas, D. (1991) Light-directed, spatially addressable parallel chemical synthesis. Science 251, 767–773.PubMedCrossRefGoogle Scholar
  110. 110.
    Singh-Gasson, S., Green, R. D., Yue, Y., et al. (1999) Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. Nat. Biotech. 17, 974–978.CrossRefGoogle Scholar
  111. 111.
    Pellois, J. P., Wang, W., and Gao, X. (2000) Peptide synthesis based on t-Boc chemistry and solution photogenerated acids. J. Comb. Chem. 2, 355–360.PubMedCrossRefGoogle Scholar
  112. 112.
    Kuroda, N., Hattori, T., Fujioka, Y., Cork, D. G., Kitada, C., and Sugawara, T. (2001) Application of automated synthesis suite to parallel solution-phase pep tide synthesis. Chem. Pharm. Bull. Tokyo 49, 1147–1154.PubMedCrossRefGoogle Scholar
  113. 113.
    Sugawara, T., Kobayashi, K., Okamoto, S., Kitada, S., and Fujino, M. (1995) Application of unique automated synthesis system for solution-phase peptide synthesis. Chem. Pharm. Bull. Tokyo 43, 1272–1280.PubMedCrossRefGoogle Scholar
  114. 114.
    Kuroda, N., Hattori, T., Kitada, C., and Sugawara, T. (2001) Solution-phase auto mated synthesis of tripeptide derivatives. Chem. Pharm. Bull. Tokyo 49, 1138–1146.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Michal Lebl
    • 1
  • John Hachmann
    • 1
  1. 1.Illumina IncSan Diego

Personalised recommendations