Advertisement

Cyclic Amplification of Protein Misfolding and Aggregation

  • Paula Saá
  • Joaquín Castilla
  • Claudio Soto
Part of the Methods in Molecular Biology™ book series (MIMB, volume 299)

Abstract

Diverse human disorders, including most neurodegenerative diseases, are thought to arise from the misfolding and aggregation of an underlying protein. We have recently described a novel technology to amplify cyclically the misfolding and aggregation process in vitro. This procedure, named protein misfolding cyclic amplification (PMCA), conceptually analogous to DNA amplification by PCR, has tremendous implications for research and diagnosis. The PMCA concept has been proved on the amplification of prions implicated in the pathogenesis of transmissible spongiform encephalopathies (TSE). In these diseases, there is a tremendous need for early and sensitive biochemical diagnosis to minimize the further spreading of the prion infectious agent through the food chain. In this chapter, we describe the principles behind the PMCA technology, its application, and methodology to detect minute quantities of misfolded prion protein and its potential to be used for amplification of misfolding of other proteins implicated in diverse diseases.

Key Words

Protein conformational disorders prion Creutzfeldt-Jakob disease bovine spongiform encephalopathy Scrapie protein misfolding cyclic amplification (PMCA) Alzheimer's disease amyloid. 

References

  1. 1.
    Soto, C. (2003) Unfolding the role of protein misfolding in neurodegenerative diseases. Nature Rev. Neurosci. 4, 49–60.CrossRefGoogle Scholar
  2. 2.
    Soto, C. (2001) Protein misfolding and disease; protein refolding and therapy. FEBS Lett. 498, 204–207.PubMedCrossRefGoogle Scholar
  3. 3.
    Dobson, C. M. (1999) Protein misfolding, evolution and disease. Trends Biochem. Sci. 24, 329–332.PubMedCrossRefGoogle Scholar
  4. 4.
    Carrell, R. W. and Lomas, D. A. (1997) Conformational disease. Lancet 350, 134–138.PubMedCrossRefGoogle Scholar
  5. 5.
    Kelly, J. W. (1996) Alternative conformations of amyloidogenic proteins govern their behavior. Curr. Opin. Struct. Biol. 6, 11–17.PubMedCrossRefGoogle Scholar
  6. 6.
    Soto, C. and Saborio, G. P. (2001) Prions: disease propagation and disease therapy by conformational transmission. Trends Mol. Med. 7, 109–114.PubMedCrossRefGoogle Scholar
  7. 7.
    Prusiner, S. B. (1991) Molecular biology of prion diseases. Science 252, 1515–1522.PubMedCrossRefGoogle Scholar
  8. 8.
    Roos, R., Gajdusek, D. C., and Gibbs, C. J. Jr. (1973) The clinical characteristics of transmissible Creutzfeldt-Jakob disease. Brain 96, 1–20.PubMedCrossRefGoogle Scholar
  9. 9.
    Will, R. G., Ironside, J. W., Zeidler, M., et al. (1996) A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 347, 921–925.PubMedCrossRefGoogle Scholar
  10. 10.
    Cousens, S. N., Vynnycky, E., Zeidler, M., Will, R. G., and Smith, P. G. (1997) Predicting the CJD epidemic in humans. Nature 385, 197–198.PubMedCrossRefGoogle Scholar
  11. 11.
    Bruce, M. E., Will, R. G., Ironside, J. W., et al. (1997) Transmissions to mice indicate that 'new variant CJD is caused by the BSE agent. Nature 389, 498–501.PubMedCrossRefGoogle Scholar
  12. 12.
    Soto, C. and Castilla, J. (2004) The controversial protein-only hypothesis of prion propagation. Nat. Med. 10Suppl, S63–S67.PubMedCrossRefGoogle Scholar
  13. 13.
    Prusiner, S. B. (1998) Prions. Proc. Natl. Acad. Sci. USA 95, 13363–13383.PubMedCrossRefGoogle Scholar
  14. 14.
    Pan, K. M., Baldwin, M., Nguyen, J., et al. (1993) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc. Natl. Acad. Sci. USA 90, 10962–10966.PubMedCrossRefGoogle Scholar
  15. 15.
    Cohen, F. E. and Prusiner, S. B. (1998) Pathologic conformations of prion proteins. Annu. Rev. Biochem. 67, 793–819.PubMedCrossRefGoogle Scholar
  16. 16.
    Baldwin, M. A., Cohen, F. E., and Prusiner, S. B. (1995) Prion protein isoforms, a convergence of biological and structural investigations. J. Biol. Chem. 270, 19197–19200.PubMedCrossRefGoogle Scholar
  17. 17.
    Bueler, H., Aguzzi, A., Sailer, A., Greiner, R. A., Autenried, P., Aguet, M., and Weissmann, C. (1993) Mice devoid of PrP are resistant to scrapie. Cell 73, 1339–1347.PubMedCrossRefGoogle Scholar
  18. 18.
    DeArmond, S. J. and Prusiner, S. B. (1995) Prion protein transgenes and the neuropathology in prion diseases. Brain Pathol. 5, 77–89.CrossRefGoogle Scholar
  19. 19.
    Kocisko, D. A., Come, J. H., Priola, S. A., et al. (1994) Cell-free formation of protease-resistant prion protein. Nature 370, 471–474.PubMedCrossRefGoogle Scholar
  20. 20.
    Lucassen, R., Nishina, K., and Supattapone, S. (2003) In vitro amplification of protease-resistant prion protein requires free sulfhydryl groups. Biochemistry 42, 4127–4135.PubMedCrossRefGoogle Scholar
  21. 21.
    Saborio, G. P., Permanne, B., and Soto, C. (2001) Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411, 810–813.PubMedCrossRefGoogle Scholar
  22. 22.
    Deleault, N. R., Lucassen, R. W., and Supattapone, S. (2003) RNA molecules stimulate prion protein conversion. Nature 425, 717–720.PubMedCrossRefGoogle Scholar
  23. 23.
    Cohen, F. E. (1999) Protein misfolding and prion diseases. J. Mol. Biol. 293, 313–320.PubMedCrossRefGoogle Scholar
  24. 24.
    Jarrett, J. T. and Lansbury, P. T. Jr. (1993) Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73, 1055–1058.PubMedCrossRefGoogle Scholar
  25. 25.
    Harper, J.D. and Lansbury, P. T. Jr. (1997) Models of amyloid seeding in Alzheimer's disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu. Rev. Biochem. 66, 385–407.PubMedCrossRefGoogle Scholar
  26. 26.
    Masel, J., Jansen, V. A., and Nowak, M. A. (1999) Quantifying the kinetic parameters of prion replication. Biophys. Chem. 77, 139–152.PubMedCrossRefGoogle Scholar
  27. 27.
    Caughey, B., Kocisko, D. A., Raymond, G. J., and Lansbury, P. T. Jr. (1995) Aggregates of scrapie-associated prion protein induce the cell-free conversion of protease-sensitive prion protein to the protease-resistant state. Chem. Biol. 2, 807–817.PubMedCrossRefGoogle Scholar
  28. 28.
    Masel, J. and Jansen, V. A. (2001) The measured level of prion infectivity varies in a predictable way according to the aggregation state of the infectious agent. Biochim. Biophys. Acta 1535, 164–173.PubMedGoogle Scholar
  29. 29.
    Prusiner, S. B., McKinley, M. P., Bowman, K. A., et al. (1983) Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 35, 349–358.PubMedCrossRefGoogle Scholar
  30. 30.
    Jeffrey, M., Goodbrand, I. A., and Goodsir, C. M. (1995) Pathology of the transmissible spongiform encephalopathies with special emphasis on ultrastructure. Micron. 26, 277–298.PubMedCrossRefGoogle Scholar
  31. 31.
    Soto, C., Saborio, G. P., and Anderes, L. (2002) Cyclic amplification of protein misfolding: application to prion-related disorders and beyond. Trends Neurosci. 25, 390–394.PubMedCrossRefGoogle Scholar
  32. 32.
    Bessen, R. A., Raymond, G. J., and Caughey, B. (1997) In situ formation of protease-resistant prion protein in transmissible spongiform encephalopathy-infected brain slices. J. Biol. Chem. 272, 15227–15231.PubMedCrossRefGoogle Scholar
  33. 33.
    Horiuchi, M. and Caughey, B. (1999) Prion protein interconversions and the transmissible spongiform encephalopathies. Structure Fold. Des. 7, R231–R240.PubMedCrossRefGoogle Scholar
  34. 34.
    Kocisko, D. A., Priola, S. A., Raymond, G. J., Chesebro, B., Lansbury, P. T. Jr., and Caughey, B. (1995) Species specificity in the cell-free conversion of prion protein to protease-resistant forms: a model for the scrapie species barrier. Proc. Natl. Acad. Sci. USA 92, 3923–3927.PubMedCrossRefGoogle Scholar
  35. 35.
    Chabry, J., Caughey, B., and Chesebro, B. (1998) Specific inhibition of in vitro formation of protease-resistant prion protein by synthetic peptides. J. Biol. Chem. 273, 13203–13207.PubMedCrossRefGoogle Scholar
  36. 36.
    Caughey, B., Raymond, G. J., and Bessen, R. A. (1998) Strain-dependent differences in beta-sheet conformations of abnormal prion protein. J. Biol. Chem. 273, 32230–32235.PubMedCrossRefGoogle Scholar
  37. 37.
    Aguzzi, A. and Weissmann, C. (1997) Prion research: the next frontiers. Nature 389, 795–798.PubMedCrossRefGoogle Scholar
  38. 38.
    Weber, T., Otto, M., Bodemer, M., and Zerr, I. (1997) Diagnosis of Creutzfeldt-Jakob disease and related human spongiform encephalopathies. Biomed. Pharmacother. 51, 381–387.PubMedCrossRefGoogle Scholar
  39. 39.
    Steinhoff, B. J., Racker, S., Herrendorf, G., et al. (1996) Accuracy and reliability of periodic sharp wave complexes in Creutzfeldt-Jakob disease. Arch. Neurol. 53, 162–166.PubMedGoogle Scholar
  40. 40.
    Budka, H., Aguzzi, A., Brown, P., et al. (1995) Neuropathological diagnostic criteria for Creutzfeldt-Jakob disease (CJD) and other human spongiform encephalopathies (prion diseases). Brain Pathol. 5,459–466.PubMedCrossRefGoogle Scholar
  41. 41.
    Collinge, J. (2001) Prion diseases of humans and animals: their causes and molecular basis. Annu. Rev. Neurosci. 24, 519–550.PubMedCrossRefGoogle Scholar
  42. 42.
    Frosh, A., Joyce, R., and Johnson, A. (2001) Iatrogenic vCJD from surgical instruments. BMJ 322, 1558–1559.PubMedCrossRefGoogle Scholar
  43. 43.
    Soto, C. (2004) Diagnosing prion diseases: needs, challenges, and hopes. Nature Rev. Microbiol., in press.Google Scholar
  44. 44.
    Schiermeier, Q. (2001) Testing times for BSE. Nature 409, 658–659.PubMedCrossRefGoogle Scholar
  45. 45.
    Anonymous (2001) Scientists race to develop a blood test for vCJD. Nat. Med. 7, 261.CrossRefGoogle Scholar
  46. 46.
    Ingrosso, L., Vetrugno, V., Cardone, F., and Pocchiari, M. (2002) Molecular diagnostics of transmissible spongiform encephalopathies. Trends Mol. Med. 8,273–280.PubMedCrossRefGoogle Scholar
  47. 47.
    Aguzzi, A. (2000) Prion diseases, blood and the immune system: concerns and reality. Haematologica 85, 3–10.PubMedGoogle Scholar
  48. 48.
    Brown, P., Cervenakova, L., and Diringer, H. (2001) Blood infectivity and the prospects for a diagnostic screening test in Creutzfeldt-Jakob disease. J. Lab. Clin. Med. 137,5–13.PubMedCrossRefGoogle Scholar
  49. 49.
    Wadsworth, J. D., Joiner, S., Hill, A. F., et al. (2001) Tissue distribution of protease resistant prion protein in variant Creutzfeldt-Jakob disease using a highly sensitive immunoblotting assay. Lancet 358, 171–180.PubMedCrossRefGoogle Scholar
  50. 50.
    Carrell, R. W. and Lomas, D. A. (1997) Conformational disease. Lancet 350, 134–138.PubMedCrossRefGoogle Scholar
  51. 51.
    Lomakin, A., Chung, D. S., Benedek, G. B., Kirschner, D. A., and Teplow, D. B. (1996) On the nucleation and growth of amyloid beta-protein fibrils: detection of nuclei and quantitation of rate constants. Proc. Natl. Acad. Sci. USA 93, 1125–1129.PubMedCrossRefGoogle Scholar
  52. 52.
    Teplow, D. B. (1998) Structural and kinetic features of amyloid beta-protein fibrillogenesis. Amyloid 5, 121–142.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Paula Saá
    • 1
  • Joaquín Castilla
    • 1
  • Claudio Soto
    • 1
  1. 1.Department of NeurologyUniversity of Texas Medical BranchGalveston

Personalised recommendations