Skip to main content

Phage Display Vectors for the In Vitro Generation of Human Antibody Fragments

  • Protocol
Immunochemical Protocols

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 295))

Abstract

A major source of human antibodies are phage display libraries, which are constructed from various genetic sources. Antibodies are expressed as scFV and Fab antibody fragments using various vector systems. This review offers a comprehensive overview of M13 phage display antibody vectors and discusses their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Von Behring, E. and Kitasato, S. (1890) Über das Zustandekommen der Diphtherie-Immunität und der Tetanus-Immunität bei Thieren. Deutsche Medizinische Wochenzeitschrift 16, 1113–1114.

    Article  Google Scholar 

  2. Khler, G. and Milstein, C. (1975) Continous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497.

    Article  Google Scholar 

  3. Winter, G. and Milstein, C. (1991) Man-made antibodies. Nature 349, 293–299.

    Article  PubMed  CAS  Google Scholar 

  4. Jakobovits, A. (1995) Production of fully human antibodies by transgenic mice. Curr. Opin. Biotechnol. 6, 561–566.

    Article  PubMed  CAS  Google Scholar 

  5. Lonberg, N. and Huszar, D. (1995) Human antibodies from transgenic mice. Int. Rev. Immunol. 13, 65–93.

    Article  PubMed  CAS  Google Scholar 

  6. Fishwild, D. M., O%Donnel, S. L., Bengoechea, T., Hudson, D. V., Harding, F., Bernhar, S. L., et al. (1996) High-avidity human IgG kappa monoclonal antibodies from a novel strain of minilocus transgenic mice. Nat. Biotech. 14, 845–851.

    Article  CAS  Google Scholar 

  7. Huse, W. D., Sastry, L., Iverson, S. A., Kang, A. S., Alting-Mees, M., Burton, D. R., et al. (1989) Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science 246, 1275–1281.

    Article  PubMed  CAS  Google Scholar 

  8. Persson, M. A. A., Caothien, R. H., and Burton, D. R. (1991) Generation of diverse high-affinity human monoclonal antibodies by repertoire cloning. Proc. Natl. Acad. Sci. USA 88, 2432–2436.

    Article  PubMed  CAS  Google Scholar 

  9. Smith, G. P. (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317.

    Article  PubMed  CAS  Google Scholar 

  10. McCafferty, J., Griffiths, A. D., Winter, G., and Chiswell, D. J. (1990) Phage antibodies: filamentous phage displaying antibody variable domain. Nature 348, 552–554.

    Article  PubMed  CAS  Google Scholar 

  11. Barbas III, C. F., Kang, A. S., Lerner, R. A., and Benkovic, S. J. (1991) Assembly of combinatorial antibody libraries on phages surfaces: the gene III site. Proc. Natl. Acad. Sci. USA 88, 7987–7982.

    Google Scholar 

  12. Breitling, F., Dübel, S., Seehaus, T., Kleewinghaus, I., and Little, M. (1991) A surface expression vector for antibody screening. Gene 104, 1047–1153.

    Article  Google Scholar 

  13. Clackson, T., Hoogenboom, H. R., Griffiths, A. D., and Winter, G. (1991) Making antibody fragments using phage display libraries. Nature 352, 624–628.

    Article  PubMed  CAS  Google Scholar 

  14. Hoogenboom, H. R., Griffiths, A. D., Johnson, K. S., Chiswell, D. J., Hudson, P., and Winter, G. (1991) Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucl. Acids Res. 19, 4133–4137.

    Article  PubMed  CAS  Google Scholar 

  15. Marks, J. D., Hoogenboom, H. R., Bonnert, T. P., McCafferty, J., Griffiths, A. D., and Winter, G. (1991) By-passing immunization: human antibodies from V-gene libraries diplayed on phage. J. Mol. Biol. 222, 581–597.

    Article  PubMed  CAS  Google Scholar 

  16. Sblattero, D. and Bradbury, A. (2000) Exploiting recombination in single bacteria to make large phage antibody libraries. Nat. Biotech. 18, 75–80.

    Article  CAS  Google Scholar 

  17. Hust, M. and Dübel, S. (2004) Mating antibody phage display to proteomics. Trends Biotechnol. 22, 8–14.

    Article  PubMed  CAS  Google Scholar 

  18. Parmley, S. F. and Smith, G. P. (1988) Antibody selectable filamentous fd phage vectors: affinity purification of target genes. Gene 73, 305–318.

    Article  PubMed  CAS  Google Scholar 

  19. Hawlisch, H., Müller, M., Frank, R., Bautsch, W., Klos, A., and Köhl, J. (2001) Sitespecific anti-C3a receptor single-chain antibodies selected by differential panning on cellulose sheets. Anal. Biochem. 293, 142–145.

    Article  PubMed  CAS  Google Scholar 

  20. Moghaddam, A., Borgen, T., Stacy, J., Kausmally, L., Simonsen, B., Marvik, O. J., et al. (2003) Identification of scFv antibody fragments that specifically recognise the heroin metabolite 6-monoacetylmorphine but not morphine. J. Immunol. Meth. 280, 139–155.

    Article  CAS  Google Scholar 

  21. Hust, M., Maiss, E., Jacobsen, H. J., and Reinard, T. (2002) The production of a genus specific recombinant antibody (scFv) using a recombinant Potyvirus protease. J. Virol. Meth. 106, 225–233.

    Article  CAS  Google Scholar 

  22. Visintin, M., Tse, E., Axelson, H., Rabbitts, T. H., and Cattaneo, A. (1999) Selection of antibodies for intracellular function using a two-hybrid in vivo system. Proc. Natl. Acad. Sci. USA 96, 11,723–11,728.

    Article  PubMed  CAS  Google Scholar 

  23. Biocca, S., Ruberti, F., Tafani, M., Pierandrei-Amaldi, P., and Cattaneo, A. (1995) Redox state of single chain Fv fragments targeted to the endoplasmic reticulum, cytosol and mitochondria. Bio/ Technology 13, 1110–1115.

    PubMed  CAS  Google Scholar 

  24. Fuchs, P., Breitling, F., Dübel, S., Seehaus, T., and Little, M. (1991) Targeting recombinant antibodies to the surface of E. coli: fusion to a peptidoglycan associated lipoprotein. Bio/Technology 9, 1369–1372.

    Article  PubMed  CAS  Google Scholar 

  25. Fuchs, P., Weichel, W., Dübel, S., Breitling, F., and Little, M. (1996) Specific selection of E. coli expressing functional cell-wall bound antibody fragments by FACS. Immunotechnology 2, 97–102.

    Article  PubMed  CAS  Google Scholar 

  26. Harvey, B. R., Rogers, G. K., Iverson, B. I., and Georgiou, G. (2002) Anchored periplasmic expression (APEx): a new platform for library screening and affinity maturation. Conference book IBC%s 13th international conference, Antibody Engineering.

    Google Scholar 

  27. Boder, E. T. and Wittrip. K. D. (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotech. 15, 553–558.

    Article  CAS  Google Scholar 

  28. Mattheakiss, L. C., Bhatt, R. R., and Dower, W. J. (1994) An in vitro polysome display system for identifying ligands form very large peptide libraries. Proc. Natl. Acad. Sci. USA 91, 9022–9026.

    Article  Google Scholar 

  29. Hanes, J. and Plückthun, A. (1997) In vitro selection and evolution of functional proteins by using ribosome display. Proc. Natl. Acad. Sci. USA 94, 4937–4942.

    Article  PubMed  CAS  Google Scholar 

  30. Roberts, R. W. and Szostak, J. W. (1997) RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc. Natl. Acad. Sci. USA 94, 12,297–12,302.

    Article  PubMed  CAS  Google Scholar 

  31. McCafferty, J., Hoogenboom, H. R., and Chiswell, D. J. (1996) Antibody Engineering: A Practical Approach. Oxford University Press, Oxford, UK.

    Google Scholar 

  32. Kontermann, R. E. and Dübel, S. (eds.) (2001) Antibody Engineering. Springer Lab Manuals, Berlin, Germany.

    Google Scholar 

  33. Danner, S. and Belasco, J. G. (2001) T7 phage display: A novel genetic selection system for cloning RNA-binding protein from cDNA libraries. Proc. Natl. Acad. Sci. USA 98, 12,954–12,959.

    Article  PubMed  CAS  Google Scholar 

  34. Mullinax, R. L, Gross, E. A., Amberg, J. R., Hay, B. N., Hogreffe, H. H., Kubitz, M. M., et al. (1990) Identification of human antibody fragment clones specific for tetanus toxoid in a bacteriophage λ immunoexpression library. Proc. Natl. Acad. Sci. USA 87, 8095–8099.

    Article  PubMed  CAS  Google Scholar 

  35. Kang, A. S., Jones, T. M., and Burton, D. R. (1991) Antibody redesign by chain shuffling from random combinatorial immunoglobulin libraries. Proc. Natl. Acad. Sci. USA 88, 11,120–11,123.

    Article  PubMed  CAS  Google Scholar 

  36. Skerra, A. and Plückthun, A. (1988) Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240, 1038–1041.

    CAS  Google Scholar 

  37. Marks, J. D., Griffiths, A. D., Malmqvist, M., Clackson, T. P., Bye, J. M., and Winter, G. (1992) By-passing immunization: building high affinity human antibodies by chain shuffling. Bio/Technology 10, 779–783.

    Article  PubMed  CAS  Google Scholar 

  38. Griffiths, A. D., Williams, S. C., Hartley, O., Tomlinson, I. M., Waterhouse, P., Crosby, W., et al. (1994) Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 13, 3245–3260.

    PubMed  CAS  Google Scholar 

  39. Crissman, J. W. and Smith, G. P. (1984) Gene 3 protein of filamentous phages: evidences for a carboxyl-terminal domain with a role in morphogenesis. Virology 132, 445–455.

    Article  PubMed  CAS  Google Scholar 

  40. Kang, A. S., Barbas, C. F., Janda, K. D., Bencovic, S. J., and Lerner, R. A. (1991a) Linkage of recognition and replication functions by assembling combinatorial antibody Fab libraries along phage surfaces. Proc. Natl. Acad. Sci. USA 88, 4363–4366.

    Article  PubMed  CAS  Google Scholar 

  41. Cwirla, S. E., Peters, E. A., Barrett, R. W., and Dower, W. J. (1990) Peptides on phage: a vast library of peptides for identifying ligands. Proc. Natl. Acad. Sci. USA 87, 6378–6382.

    Article  PubMed  CAS  Google Scholar 

  42. Felici, F., Castagnoli, L., Musacchio, A., Jappelli, R., and Cesareni, G. (1991) Selection of antibody ligands from a large library of oligopeptides expressed on a multivalent exposition vector. J. Mol. Biol. 222, 301–310.

    Article  PubMed  CAS  Google Scholar 

  43. Jespers, L. S., Messens, J. H., de Keyser, A., Eeckhout, D., van den Brande, I., Gansemans, Y. G., et al. (1995) Surface expression and ligand based selection of cDNAs fused to filamentous phage gene VI. Bio/Technology 13, 378–381.

    Article  PubMed  CAS  Google Scholar 

  44. Gao, C., Mao, S., Lo, C. H., Wirsching, P., Lerner, R. A., and Janda, K. D. (1999) Making artificial antibodies: a format for phage display of combinatorial heterodimeric arrays. Proc. Natl. Acad. Sci. USA 96, 6025–30.

    Article  PubMed  CAS  Google Scholar 

  45. Vieira, J. and Messing, J. (1987) Production of single-stranded plasmid DNA. Methods Enzymol. 153, 3–11.

    Article  PubMed  CAS  Google Scholar 

  46. O%Connel, D., Becerril, B., Roy-Burman, A., Daws, M., and Marks, J. D. (2002) Phage versus phagemid libraries for generation of human monoclonal antibodies. J. Mol. Biol. 321, 49–56.

    Article  CAS  Google Scholar 

  47. Garrard, L. J., Yang, M., O%Connel, M. P., Kelley, R., and Henner, D. J. (1991) Fab assembly and enrichment in a monovalent phage display system. Bio/Technology 9, 1373–1377.

    Article  PubMed  CAS  Google Scholar 

  48. Lowman, H. B., Bass, S. H., Simpson, N., and Wells, J. A. (1991) Selecting High-Affinity binding proteins by monovalent phage display. Biochemistry 30, 10,832–10,838.

    Article  PubMed  CAS  Google Scholar 

  49. Rondot, S., Koch, J., Breitling, F., and Dübel, S. (2001) A helperphage to improve single chain antibody presentation in phage display. Nat. Biotechnol. 19, 75–78.

    Article  PubMed  CAS  Google Scholar 

  50. Baek, H., Suk, K. H., Kim, Y. H., and Cha, S. (2002) An improved helper phage system for efficient isolation of specific antibody molecules in phage display. Nucleic Acids Res. 30, e18.

    Article  PubMed  Google Scholar 

  51. Spada, S. and Plückthun, A. (1997) Selectivity infective phage (SIP) technology: A novel method for in vivo selection of interacting proteinligand pairs. Nat. Med. 3, 694–696.

    Article  PubMed  CAS  Google Scholar 

  52. Paschke, M., Zahn, G., Warsinke, A., and Höhne, W. (2001) New series of vectors for phage display and prokaryotic expression of proteins. BioTechniques 30, 720–726.

    PubMed  CAS  Google Scholar 

  53. Jacob, F. and Monod J. (1961) Genetic regulatory mechanism in the synthesis of proteins. J. Mol. Biol. 3, 318–356.

    Article  PubMed  CAS  Google Scholar 

  54. Zahn, G., Skerra, A., and Höhne, W. (1999) Investigation of a tetracycline-regulated phage display system. Protein Eng. 12, 1031–1034.

    Article  PubMed  CAS  Google Scholar 

  55. Bujard, H., Gentz, R., Lanzer, M., Stueber, D., Mueller, M., Ibrahimi, I., et al. (1987) A T5 promoter-based transcription-translation system for the analysis of proteins in vitro and in vivo. Methods Enzymol. 155, 416–433.

    Article  PubMed  CAS  Google Scholar 

  56. Lei, S.-P., Lin, H.-C, Wang, S.-S., Callaway, J., and Wilcox, G. (1987) Characterization of the Erwinia caratovora pelB gene and its product pectate lyase. J. Bacteriol. 169, 4379–4383.

    PubMed  CAS  Google Scholar 

  57. Skerra, A., Pfitzinger, I., and Plückthun, A. (1993) The functional expression of antibody Fv fragments in Escherichia coli: improved vectors and a generally applicable purification technique. Bio/Technology 9, 273–278.

    Article  Google Scholar 

  58. Skerra, A. and Schmidt, T. G. M. (1999) Applications of a peptide ligand for streptavidin: the Strep-tag. Biomol. Engineer. 16, 79–86.

    Article  CAS  Google Scholar 

  59. McCafferty, J., Fitzgerald, K. J., Earnshaw, J., Chiswell, D. J., Link, J., Smith, R., and Kenten, J. (1994) Selection and rapid purification of murine antibody fragments that bind a transition-state analog by phage-display. Appl. Biochem. Biotech. 47, 157–173.

    Article  CAS  Google Scholar 

  60. Simmons, L. C., Reilly, D., Klimowski, L., Raju, T. S., Meng, G., Sims, P., et al. (2002) Expression of full-length immunoglobulins in Escherichia coli: rapid and efficient production of aglycosylated antibodies. J. Immunol. Methods 263, 133–147.

    Article  PubMed  CAS  Google Scholar 

  61. Bird, R. E., Hardman, K. D., Jacobsen, J. W., Johnson, S., Kaufman, B.M, Lee, S. M., et al. (1988) Single-chain antigen-binding proteins. Science 242, 423–426.

    Article  PubMed  CAS  Google Scholar 

  62. Bird, R. E. and Walker, B. W. (1991) Single chain variable regions. Trends Biotech. 9, 132–137.

    Article  CAS  Google Scholar 

  63. Huston, J. S., Levinson, D., Mudgett, H. M., Tai, M. S., Novotny, J., Margolies, M. N., et al. (1988) Protein engineering of antibody binding sites: recovery of specific activity in an anti-digosin single-chain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. USA 85, 5879–5883.

    Article  CAS  Google Scholar 

  64. Kortt, A. A., Lah, M., Oddie, G. W., Gruen, L. C., Burns, J. E., Pearce, L. A., et al. (1997) Single chain Fv fragments of antineurominidase antibody NC10 containing five and ten residue linkers form dimers and with zero residue linker a trimer. Prot. Eng. 10, 423–428.

    Article  CAS  Google Scholar 

  65. Arndt, K. M., Müller, K. M., and Plückthun, A. (1998) Factors influencing the dimer to monomer transition of an antibody singlechain Fv fragment. Biochemistry 37, 12,918–12,926.

    Article  PubMed  CAS  Google Scholar 

  66. Le Gall, F., Kipriyanov, S. M., Moldenhauer, G., and Little, M. (1999) Di-, tri-and tetrameric single chain Fv antibody fragments against human CD19: effect of valency on cell binding. FEBS Lett. 453, 164–168.

    Article  PubMed  CAS  Google Scholar 

  67. Marks, J. D., Hoogenboom, H. R., Griffiths, A. D., and Winter, G. (1992) Molecular evolution of proteins on filamentous phage. J. Biol. Chem. 267, 16,007–16,010.

    PubMed  CAS  Google Scholar 

  68. Iliades, P., Dougan, D. A., Oddie, G. W., Metzger, D. W., Hudson, P. J., and Kortt, A. A. (1998) Single-chain Fv of anti-idiotype 111G10 antibody interacts with antibody NC41 single-chain Fv with a higher affinity than the affinity for the interaction of the parent Fab fragments. J. Protein. Chem. 17, 245–254.

    Article  PubMed  CAS  Google Scholar 

  69. Plückthun, A. (1990) Antibodies from Escherichia coli. Nature 347, 497–498.

    Google Scholar 

  70. Plückthun, A. (1991) Antibody engineering: advances from the use of Escherichia coli expression systems. Bio/Technology 9, 545–551.

    Article  PubMed  Google Scholar 

  71. Kramer, K., Fiedler, M., Skerra, A., and Hock, B. (2002) A generic strategy for subcloning antibody variable regions from the scFv phage display vector pCANTAB 5 E into pASK85 permits the economical production of Fab fragments and leads to improved recombinant immunoglobulin stability. Biosensors Bioelectronics 17, 305–313.

    Article  PubMed  CAS  Google Scholar 

  72. Ward, E. S. (1993) Antibody engineering using Escherichia coli as host. Adv. Pharmacol. 24, 1–20.

    Article  PubMed  CAS  Google Scholar 

  73. De Haardt, H. J., van Neer, N., Reurst, A., Hufton, S. E., Roovers, R. C., Henderikx, P., et al. (1999) A large non-immunized human fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J. Biol. Chem. 274, 18,218–18,230.

    Article  Google Scholar 

  74. Welschof, M., Terness, P., Kipriyanov, S., Stanescu, D., Breitling, F., Dorsam, H., et al. (1997) The antigen binding domain of a human IgG-anti-F(ab%)2 autoantibody. Proc. Natl. Acad. Sci. USA 94, 1902–1907.

    Article  PubMed  CAS  Google Scholar 

  75. Dübel, S., Breitling, F., Fuchs, P., Braunagel, M., Klewinghaus, I., and Little, M. (1993) A family of vectors for surface display and production of antibodies. Gene 128, 97–101.

    Article  PubMed  Google Scholar 

  76. Schmiedl, A., Breitling, F., and Dübel, S. (2000) Expression of a bispecific dsFv-dsFv% antibody fragment in Escherichia coli. Protein Eng. 13, 725–734.

    CAS  Google Scholar 

  77. Iba, Y., Ito, W., and Kurosawa, Y. (1997) Expression vectors for the introduction of higly diverged sequences into the six complementaritydetermining regions of an antibody. Gene 194, 35–46.

    Article  PubMed  CAS  Google Scholar 

  78. Krebber, A., Bornhauser, S., Burmester, J., Honegger, A., Willuda, J., Bosshard, H. R., and Plückthun, A. (1997) Reliable cloning of functional antibody variable domains from hybridomas and spleen cell repertoires employing a reengineered phage display system. J. Immunol. Meth. 201, 35–55.

    Article  CAS  Google Scholar 

  79. Haidaris, C. G., Malone, J., Sherrill, L. A., Bliss, J. M., Gaspari, A. A., Insel, R. A., et al. (2001) Recombinant human antibody single chain variable fragments reactive with Candida albicans surface antigens. J. Immunol. Meth. 257, 185–202.

    Article  CAS  Google Scholar 

  80. Barbas III, C. F., Burton, D. R., Scott, J. K., and Silverman G. J. (2001) Phage Display: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  81. Tsurushita, N., Fu, H., and Warren, C. (1996) Phage display vectors for in vivo recombination of immunoglobulin heavy and light chain genes to make large combinatorial libraries. Gene 172, 59–63.

    Article  PubMed  CAS  Google Scholar 

  82. Pini, A, Viti, F., Santucci, A., Carnemolla, B., Zardi, L., Neri, P., and Neri, D. (1998) Design and use of a phage display library. J. Biol. Chem. 273, 21,769–21,776.

    Article  PubMed  CAS  Google Scholar 

  83. Viti, F., Nilsson, V., Demartis, S., Huber, A., and Neri, D. (2000) Design and use of phage display libraries for the selection of antibodies and enzymes. Meth. Enzymol. 326, 480–497.

    Google Scholar 

  84. Söderlind, E., Lagerkvist, A. C. S., Duenas, M., Malmborg, A.-C., Ayala, M., Danielsson, L., and Borrebaeck, C. A. K. (1993) Chaperonin assisted phage display of antibody fragments of filamentous bacteriophages. Bio/Technology 11, 503–507.

    Article  PubMed  Google Scholar 

  85. Kobayashi, N., Söderlind, E., and Borrebaeck, C. A. K. (1997) Analysis of assembly of synthetic antibody fragments: Expression of functional scFv with predifined specificity. BioTechniques 23, 500–503.

    PubMed  CAS  Google Scholar 

  86. Jirholt, P., Ohlin, M., Borrebaeck, C. A. K., and Söderlind, B., (1998) Exploiting sequences space: shuffling in vivo formed complementarity determining regions into a master framework. Gene 215, 471–476.

    Article  PubMed  CAS  Google Scholar 

  87. ØAndersen, P. S., Øster, A., Johansen, L. K., Riise, E., ABjørnevad, M., et al. (1993) Efficient method for constructing comprehensive murine Fab antibody libraries displayed on phage. Nucl. Acids Res. 21, 4491–4498.

    Article  Google Scholar 

  88. Dziegiel, M., Nielsen, L. K., Andersen, P. S., Blancher, A., Dickmeiss, E., and Engberg, J. (1995) Phage display used for gene cloning of human recombinant antibody against the erythrocyte surface antigen, rhesus D. J. Immunol. Meth. 182, 7–19.

    Article  CAS  Google Scholar 

  89. Söderlind, E., Strandberg, L., Jirholt, P., Kobayashi, N., Alexeiva, V., Aberg, A.-M., et al. (2000) Recombining germline-derived CDR sequences for creating diverse single-framework antibody libraries. Nat. Biotech. 18, 852–856.

    Article  Google Scholar 

  90. Johansen, L. K., Albrechtsen, B., Andersen, H. W., and Engberg, J. (1995) pFab60: a new, efficient vector for expression of antibody Fab fragments displayed on phage. Protein Eng. 8, 1063–1067.

    Article  PubMed  CAS  Google Scholar 

  91. Engberg, J., Andersen, P. S., Nielsen, L. K., Dziegiel, M., Johansen, L. K., and Albrechtsen, B. (1996) Phage-display libraries of murine and human Fab fragments. Mol. Biotechnol. 6, 287–310.

    Article  PubMed  CAS  Google Scholar 

  92. Hoogenboom, H. R. and Winter, G. (1992) By-passing immunisation: Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro. J. Mol. Biol. 227, 381–388.

    Article  PubMed  CAS  Google Scholar 

  93. Finnern, R., Pedrollo, E., Fisch, I., Wieslander, J., Marks, J. D., Lockwood, C. M., and Ouwehand, W. H. (1997) Human autoimmune anti-proteinase 3 scFv from a phage display library. Clin. Exp. Immunol. 107, 269–81.

    Article  PubMed  CAS  Google Scholar 

  94. Rojas, Gertrudis, Almagro, J. C., Acevedo, B., and Gavilondo, J. V. (2002) Phage antibody fragments library combining a single human light chain variable region with immune mouse heavy chain variable regions. J. Biotech. 94, 287–298.

    Article  CAS  Google Scholar 

  95. Den, W., Sompuram, S. R., Sarantopoulos, S., and Sharon, J. (1999) A bidirectional phage display vector for the selection and mass transfer of polyclonal antibody libraries. J. Immunol. Meth. 222, 45–57.

    Article  CAS  Google Scholar 

  96. Ge, L., Knappik, A., Pack, P., Freund, C., and Plükthun, A. (1995) Expressing antibodies in Escherichia coli, in Antibody Engineering (Borrebaeck, C. A. K., ed.), Oxford University Press, Oxford, UK.

    Google Scholar 

  97. Goletz, A., Cristensen, P. A., Kristensen, P., Blohm, D., Tomlinson, I., Winter, G., and Karsten, U. (2002) Selection of large diversities of antiidiotypic antibody fragments by phage display. J. Mol. Biol. 315, 1087–1097.

    Article  PubMed  CAS  Google Scholar 

  98. Garrard, L. J. and Henner, D. J. (1993) Selection of an anti-IGF-1 Fab from a Fab phage library created by mutagenesis of multiple CDR loops. Gene 128, 103–109.

    Article  PubMed  CAS  Google Scholar 

  99. Geoffroy, F., Sodoyer, R., and Aujame, L. (1994) A new phage display system to construct multicombinatorial libraries of very large antibody repertoires. Gene 151, 109–113.

    Article  PubMed  CAS  Google Scholar 

  100. Knappik, A., Ge, L., Honegger, A., Pack, P., Fischer, M., Wellnhofer, G., et al. (2000) Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus framework and CDRs randomized with trinucleotides. J. Mol. Biol. 296, 57–86.

    Article  PubMed  CAS  Google Scholar 

  101. Akamatsu, Y., Cole, M. S., Tso, J. Y., and Tsurushita, N. (1993) Construction of a human Ig combinatorial library from genomic V segments and synthetic CDR3 fragments. J. Immunol. 151, 4651–4659.

    PubMed  CAS  Google Scholar 

  102. Vaughan, T. J., Williams, A. J., Pritchard, K., Osbourn, J. K., Pope, A. R., Earnshaw, J. C., et al. (1996) Human antibodies with subnanomolar affinities isolated from a large non-immunized phage display library. Nat. Biotech. 14, 309–314.

    Article  CAS  Google Scholar 

  103. Barbas III, C. F., Bain, J. D, Hoekstra, M., and Lerner, R. A. (1992) Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problems. Proc. Natl. Acad. Sci. USA 89, 4457–4461.

    Article  PubMed  CAS  Google Scholar 

  104. Barbas III, C. F., Amberg, W., Simoncsitis, A., Jones, T. M., and Lerner, R. A. (1993) Selection of human anti-hapten antibodies from semisynthetic libraries. Gene 137, 57–62.

    Article  PubMed  CAS  Google Scholar 

  105. Desiderio, A., Franconi, R., Lopez, M., Villani, A. E., Viti, F., Chiaraluce, R., et al. (2001) A semi-synthetic repertoire of intrinsically stable antibody fragments derived from a single-framework scaffold. J. Mol. Biol. 310, 603–615.

    Article  PubMed  CAS  Google Scholar 

  106. Sheets, M. D., Amersdorfer, P., Finnern, R., Sargent, P., Lindqvist, E.,Schier, R., et al. (1998) Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens. Proc. Natl. Acad. Sci. USA 95, 6157–6162.

    Article  PubMed  CAS  Google Scholar 

  107. Nissim, A., Hoogenboom, H. R., Tomlinson, I. M., Flynn, G., Midgley, C., Lane, D., et al. (1994) Antibody fragments from a “single pot” phage display library as immunochemical reagents. EMBO J. 13, 692–698.

    PubMed  CAS  Google Scholar 

  108. De Kruif, J. Boel, E., and Logtenberg, T. (1995) Selection and application of human single chain Fv antibody fragments from a semi-synthetic phage antibody display library with designed CDR3 regions. J. Mol. Biol. 248, 97–105.

    Article  PubMed  CAS  Google Scholar 

  109. Döam, H., Rohrbach, P, Küschner, T., Kipriyanov, S., Renner, S., Braunnagel, M., et al. (1997) Antibodies to steroids from a small human naive IgM library. FEBS Lett. 414, 7–13.

    Article  Google Scholar 

  110. Little, M., Welschof, M., Braunagel, M., Hermes, I., Christ, C., Keller, A., et al. (1999) Generation of a large complex antibody library from multiple donors. J. Immunol. Meth. 231, 3–9.

    Article  CAS  Google Scholar 

  111. Schmidt, A., Müler, D., Mersmann, M., Wüst, T., Gerlach, E., Garin-Chesa, P., et al. (2001) Generation of human high-affinity antibodies specific for the fibroblast activation protein by guided selection. Eur. J. Biochem. 268, 1730–1738.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Hust, M., Dübel, S. (2005). Phage Display Vectors for the In Vitro Generation of Human Antibody Fragments. In: Burns, R. (eds) Immunochemical Protocols. Methods In Molecular Biology™, vol 295. Humana Press. https://doi.org/10.1385/1-59259-873-0:071

Download citation

  • DOI: https://doi.org/10.1385/1-59259-873-0:071

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-274-2

  • Online ISBN: 978-1-59259-873-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics