Skip to main content

Quantitative TaqMan Real-Time PCR

Diagnostic and Scientific Applications

  • Protocol
  • 2113 Accesses

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

The invention of real-time polymerase chair reaction (PCR) has revolutionized the quantification of gene expression and DNA copy number measurements. However, after the first documentation of real-time PCR in 1993 (1), it took several years for this method to become a mainstream tool. PCR generates DNA copies in an exponential way. As soon as resources are exhausted, however, the so-called plateau phase of PCR reaction is reached, making quantification very unreliable. Therefore, quantification appears most reliable in the early exponential phase of PCR (i.e., in a “real-time” fashion). To ensure measurements in this phase of the PCR cycle, real-time PCR measures as soon as the threshold of detection is definitely reached. The cycle of PCR at which this occurs is then named the threshold cycle (2) (see Fig. 1). It is the objective of this chapter to describe the possibilities of TaqMan real-time PCR for mRNA and DNA quantification and to discuss pitfalls and alternatives.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Higuchi, R., Fockler, C., Dollinger, G., and Watson R. (1993) Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology 11, 1026–1030.

    Article  PubMed  CAS  Google Scholar 

  2. Ginzinger, D. G. (1993) Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp. Hematol. 30, 503–512.

    Article  Google Scholar 

  3. Dötsch, J., Repp, R., Rascher, W., and Christiansen, H. (2001) Diagnostic and scientific applications of TaqMan real-time PCR in neuroblastomas. Expert Rev. Mol. Diagn. 1, 233–238.

    Article  PubMed  Google Scholar 

  4. Dötsch, J., Nüsken, K. D., Knerr, I., Kirschbaum, M., Repp, R., and Rascher, W. (1999) Leptin and neuropeptide Y gene expression in human placenta: ontogeny and evidence for similarities to hypothalamic regulation. J. Clin. Endocrinol. Metab. 84, 2755–2758.

    Article  PubMed  Google Scholar 

  5. Orlando, C., Pinzani, P., and Pazzaggli, M. (1998) Developments in quantitative PCR. Clin. Chem. Lab. Med. 36, 255–269.

    Article  PubMed  CAS  Google Scholar 

  6. Dötsch, J., Harmjanz, A., Christiansen, H., Hänze, J., Lampert, F., and Rascher, W. (2000) Gene expression of neuronal nitric oxide synthase and adrenomedullin in human neuroblastoma using real-time PCR. Int. J. Cancer 88, 172–175.

    Article  PubMed  Google Scholar 

  7. Förster, E. (1994) Rapid generation of internal standards for competitive PCR by low-stringency primer annealing. BioTechniques 16, 1006–1008.

    PubMed  Google Scholar 

  8. Heid, C. A., Stevens, J., Livak, K. J., and Williams, P. M. (1996) Real-time quantitative PCR. Genome Res. 6, 986–994.

    Article  PubMed  CAS  Google Scholar 

  9. Gibson, U. E., Heid, C. A., and Williams, P. M. (1996) A novel method for real-time quantitative RT-PCR. Genome Res. 6, 995–1001.

    Article  PubMed  CAS  Google Scholar 

  10. Raggi, C. C., Bagnoni, M. L., Tonini, G. P., et al. (1999) Real-time quantitative PCR for the measurement of MYCN amplification in human neuroblastoma with the TaqMan detection system. Clin. Chem. 45, 1918–1924.

    PubMed  CAS  Google Scholar 

  11. Klein, D. (2002) Quantification using real-time PCR technology: applications and limitations. Trends Mol. Med. 8, 257–260.

    Article  PubMed  CAS  Google Scholar 

  12. Bustin, S. A. (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 25, 16–193.

    Article  Google Scholar 

  13. Schoof, E., Girstl, M., Frobenius, W., et al. (2001) Decreased gene expression of 11betahydroxysteroid dehydrogenase type 2 and 15-hydroxyprostaglandin dehydrogenase in human placenta of patients with preeclampsia. J. Clin. Endocrinol. Metab. 86, 1313–1317.

    Article  PubMed  CAS  Google Scholar 

  14. Schoof, E., Stuppy, A., Harig, F., et al. (2003) No influence of surgical stress on postoperative leptin gene expression in different adipose tissues and soluble leptin receptor plasma levels. Horm. Res. 59, 184–190.

    Article  PubMed  CAS  Google Scholar 

  15. Trollmann, R., Amann, K., Schoof, E., et al. (2003) Hypoxia activates the human placental vascular endothelial growth factor system in vitro and in vivo: up-regulation of vascular endothelial growth factor in clinically relevant hypoxic ischemia in birth asphyxia. Am. J. Obstet. Gynecol. 188, 517–523.

    Article  PubMed  CAS  Google Scholar 

  16. Brodeur, G. M., Seeger, R. C., Schwab, M., Varmus, H. E., and Bishop, J. M. (1984) Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224, 1121–1124.

    Article  PubMed  CAS  Google Scholar 

  17. Seeger, R. C., Brodeur, G. M., Sather, H., et al. (1985) Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N. Engl. J. Med. 313, 1111–1116.

    Article  PubMed  CAS  Google Scholar 

  18. Pession, A., Trere, D., Perri, P., et al. (1997) N-myc amplification and cell proliferation rate in human neuroblastoma. J. Pathol. 183, 339–344.

    Article  PubMed  CAS  Google Scholar 

  19. De Cremoux, P., Thioux, M., Peter, M., et al. (1997) Polymerase chain reaction compared with dot blotting for the determination of N-myc gene amplification in neuroblastoma. Int. J. Cancer 72, 518–521.

    Article  PubMed  Google Scholar 

  20. Sestini, R., Orlando, C., Zentilin, L., et al. (1995) Gene amplification for c-erbB-2, c-myc, epidermal growth factor receptor, int-2, and N-myc measured by quantitative PCR with a multiple competitor template. Clin. Chem. 41, 826–832.

    PubMed  CAS  Google Scholar 

  21. Shapiro, D. N., Valentine, M. B., Rowe, S. T., et al. (1993) Detection of N-myc gene amplification by fluorescence in situ hybridization. Diagnostic utility for neuroblastoma. Am. J. Pathol. 142, 1339–1346.

    PubMed  CAS  Google Scholar 

  22. Kwan, E., Norris, M. D., Zhu, L., Ferrara, D., Marshall, G. M., and Haber, M. (2000) Simultaneous detection and quantification of minimal residual disease in childhood acute lymphoblastic leukaemia using real-time polymerase chain reaction. Br. J. Haematol. 109, 430–434.

    Article  PubMed  CAS  Google Scholar 

  23. Cilloni, D., Gottardi, E., De Micheli, D., et al. (2002) Quantitative assessment of WT1 expression by real-time quantitative PCR may be a useful tool for monitoring minimal residual disease in acute leukemia patients. Leukemia 16, 2115–2121.

    Article  PubMed  CAS  Google Scholar 

  24. Brinkschmidt, C., Christiansen, H., Terpe, H. J., et al. (1997) Comparative genomic hybridization (CGH) analysis of neuroblastomas-an important methodological approach in pediatric tumour pathology. J. Pathol. 181, 394–400.

    Article  PubMed  CAS  Google Scholar 

  25. Brunk, C. F., Li, J., Avaniss-Aghajani, E. (2002) Analysis of specific bacteria from environmental samples using a quantitative polymerase chain reaction. Curr Issues Mol Biol. 4, 13–18.

    CAS  Google Scholar 

  26. Klein, D., Leutenegger, C. M., Bahula, C., et al. (2001) Influence of preassay and sequence variations on viral load determination by a multiplex real-time reverse transcriptase-polymerase chain reaction for feline immunodeficiency virus. J. Acquired Immune Defic. Syndr. 26, 8–20.

    CAS  Google Scholar 

  27. Gruber, F., Falkner, F. G., Dorner, F., and Hammerle, T. (2001) Quantitation of viral DNA by real-time PCR applying duplex amplification, internal standardization, and two-color fluorescence detection. Appl. Environ. Microbiol. 67, 2837–2839.

    Article  PubMed  CAS  Google Scholar 

  28. Bustin S. A. (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J. Mol. Endocrinol. 29, 23–39.

    Article  PubMed  CAS  Google Scholar 

  29. Wittwer, C., Herrmann, M., Moss, A., and Rasmussen, R. (1997) Continuous fluorescence monitoring of rapid cycle DNA amplification. BioTechniques 22, 130–138.

    PubMed  CAS  Google Scholar 

  30. Giulietti, A., Overbergh, L., Valckx, D., Decallonne, B., Bouillon, R., and Mathieu, C. (2001) An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods 25, 386–401.

    Article  PubMed  CAS  Google Scholar 

  31. Tyagi, S. and Kramer, R. (1996) Molecular beacons: probes that fluorescence upon hybridization. Nature Biotechnol. 14, 303–308.

    Article  CAS  Google Scholar 

  32. Zubritsky, E. (1999) Widespread interest in gene quantification and high-throughput assays are putting quantitative PCR back in the spotlight. Anal. Chem. 71, 191A–195A.

    Google Scholar 

  33. Nakagawara, A., Arima-Nakagawara, M., Scavarda, N. J., Azar, C. G., Cantor, A. B., and Brodeur, G. M. (1993) Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N. Engl. J. Med. 328, 847–854.

    Article  PubMed  CAS  Google Scholar 

  34. Chan, H. S., Haddad, G., Thorner, P. S., et al. (1991) P-Glycoprotein expression as a predictor of the outcome of therapy for neuroblastoma. N. Engl. J. Med. 325, 1608–1614.

    Article  PubMed  CAS  Google Scholar 

  35. Norris, M. D., Bordow, S. B., Marshall, G. M., Haber, P. S., Cohn, S. L., and Haber, M. (1996) Expression of the gene for multidrug-resistance-associated protein and outcome in patients with neuroblastoma. N. Engl. J. Med. 334, 231–238.

    Article  PubMed  CAS  Google Scholar 

  36. Leone, A., Seeger, R. C., Hong, C. M., et al. (1993) Evidence for nm23 RNA overexpression, DNA amplification and mutation in aggressive childhood neuroblastomas. Oncogene 8, 855–865.

    PubMed  CAS  Google Scholar 

  37. Favrot, M. C., Combaret, V., and Lasset, C. (1993) CD44-a new prognostic marker for neuroblastoma. N. Engl. J. Med. 329, 1965.

    Article  PubMed  CAS  Google Scholar 

  38. Hahn, S., Zhong, X. Y., Burk, M. R., Troeger, C., and Holzgreve, W. (2000) Multiplex and real-time quantitative PCR on fetal DNA in maternal plasma. A comparison with fetal cells isolated from maternal blood. Ann. NY Acad. Sci. 906, 148–152.

    Article  PubMed  CAS  Google Scholar 

  39. Von Ahsen, N., Oellerich, M., and Schutz, E. (2000) A method for homogeneous color-compensated genotyping of factor V (G1691A) and methylenetetrahydrofolate reductase (C677T) mutations using real-time multiplex fluorescence PCR. Clin. Biochem. 33, 535–539.

    Article  Google Scholar 

  40. Norris, M. D., Burkhart, C. A., Marshall, G. M., Weiss, W. A., and Haber, M. (2000) Expression of N-myc and MRP genes and their relationship to N-myc gene dosage and tumor formation in a murine neuroblastoma model. Med. Pediatr. Oncol. 35, 585–589.

    Article  PubMed  CAS  Google Scholar 

  41. Kawamoto, T., Shishikura, T., Ohira, M., et al. (2000) Association between favorable neuroblastoma and high expression of the novel metalloproteinase gene, nbla3145/XCE, cloned by differential screening of the full-length-enriched oligo-capping neuroblastoma cDNA libraries. Med. Pediatr. Oncol. 35, 628–631.

    Article  PubMed  CAS  Google Scholar 

  42. Fink, L., Seeger, W., Ermert, L., et al. (1998) Real-time quantitative RT-PCR after laser-assisted cell picking. Nature Med. 4, 1329–1333.

    Article  PubMed  CAS  Google Scholar 

  43. von der Hardt, K., Kandler, M. A., Fink, L., et al. Laser-assisted microdissection and real-time PCR detect anti-inflammatory effect of perfluorocarbon. Am. J. Physiol. Lung Cell Mol. Physiol. 285, L55–L62.

    Google Scholar 

  44. Lehmann, U. and Kreipe, H. (2001) Real-time PCR analysis of DNA and RNA extracted from formalin-fixed and paraffin-embedded biopsies. Methods 2, 409–418.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Dötsch, J., Schoof, E., Rascher, W. (2005). Quantitative TaqMan Real-Time PCR. In: Walker, J.M., Rapley, R. (eds) Medical Biomethods Handbook. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1385/1-59259-870-6:305

Download citation

  • DOI: https://doi.org/10.1385/1-59259-870-6:305

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-288-9

  • Online ISBN: 978-1-59259-870-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics