Skip to main content

Restriction Enzymes

Tools in Clinical Research

  • Protocol
Medical Biomethods Handbook

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 2065 Accesses

Abstract

Restriction enzymes (or restriction endonucleases) are bacterial enzymes capable of cleaving double-stranded DNA. Even though the enzymes are bacterial in origin, because of the universal nature of DNA they can digest DNA from any species, including humans. Importantly, restriction enzymes (REs) carry out this cleavage at specific sites in DNA governed by the sequence context (so-called recognition sequences). Hence, REs are known to be extremely sequence-specific; subtle alterations in the recognition sequence render the sites indigestible. This fact is the basis of their usefulness in clinical research and diagnostics. Table 1 is a list of a few of the common REs showing their sequence specificities. Figure 1 shows the interaction of a RE with DNA. The RE interacts with DNA via multiple hydrogen bonds (typically 10/2-15) plus numerous van der Waals interactions. Only when the RE-DNA complex is tightly bound does the catalytic domain cause DNA cleavage (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Horton, J. R., Nastri, H. G., Riggs, P. D., Cheng, X. (1998) Asp34 of PvuII endonuclease is directly involved in DNA minor groove recognition and indirectly involved in catalysis J. Mol. Biol. 284, 1491–1504.

    Article  PubMed  CAS  Google Scholar 

  2. Pingoud, A. and Jeltsch, A. (2001) Structure and function of type II restriction endonucleases. Nucleic Acids Res. 29, 3705–3727.

    Article  PubMed  CAS  Google Scholar 

  3. Brown, T. A. (1990) Gene Cloning, 2nd ed., Chapman & Hall, London.

    Google Scholar 

  4. Roberts, R. J. and Macelis, D. (2001) REBASE: restriction enzymes and methylases. Nucleic Acids Res. 29, 268–269.

    Article  PubMed  CAS  Google Scholar 

  5. Cotton, G. H. (1989) Detection of single base changes in nucleic acids. Biochem. J. 263, 1–10.

    PubMed  CAS  Google Scholar 

  6. Minami, R., Aoyama, N., Honsako, Y., Kasuga, M., Fujimura, T., and Maeda, S. (1997) Codon 201 (arg/gly) polymorphism of DCC (deleted in colorectal cancer) gene in flat and polypoid type colorectal tumours. Dig. Dis. Sci. 42, 2446–2452.

    Article  PubMed  CAS  Google Scholar 

  7. Prosser, J. and Condie, A. (1991) Biallelic Apa I polymorphism of the human p53 gene (TP53). Nuc. Acids. Res. 19, 4799.

    Article  CAS  Google Scholar 

  8. Garte, S. (1998) The role of ethnicity in cancer susceptibility gene polymorphisms: example of CYP1A1. Carcinogenesis 19, 1329–1332.

    Article  PubMed  CAS  Google Scholar 

  9. Cohen, J. B. and Levinson, A. D. (1988) A point mutation in the last intron responsible for increased expression and transforming activity of the c-Ha-ras oncogene. Nature 334, 119–124.

    Article  PubMed  CAS  Google Scholar 

  10. Ye, Z. and Parry, J. M. (2002) The CYP17 MspA1 polymorphism and breast cancer risk: a metaanalysis. Mutagenesis 17, 119–126.

    Article  PubMed  CAS  Google Scholar 

  11. Levi, S., Urbano-Ispizua, Gill, R., et al. (1991) Multiple K-ras codon 12 mutations in cholangiocarcinomas demonstrating a sensitive polymerase chain reaction technique Cancer Res. 51, 3497–3502.

    PubMed  CAS  Google Scholar 

  12. Ward, R., Hawkins, N., O'Grady, R., et al. (1998) Restriction endonuclease mediated selective polymerase chain reaction. Am. J. Pathol. 153, 373–379.

    Article  PubMed  CAS  Google Scholar 

  13. Jenkins, G. J. S., Suzen, H. S., Sueiro, R. A., and Parry, J. M. (1999) The restriction site mutation (RSM) assay. A review of the methodology development and the current status of the technique. Mutagenesis 14, 439–448.

    Article  PubMed  CAS  Google Scholar 

  14. Jenkins, G. J. S., Morgan, C., Parry, E. M., Baxter, J. N., and Parry J. M. (2001) The detection of mutations induced in vitro in the human p53 gene by a model reactive oxygen species (ROS) employing the restriction site mutation (RSM) assay. Mutat. Res. 498, 135–144.

    PubMed  CAS  Google Scholar 

  15. Jenkins G. J. S., Doak, S. H., Griffiths, A. P., Baxter, J. N., and Parry, J. M. (2003) Early p53 mutations in non-dysplastic Barrett’s tissues detected by the restriction site mutation (RSM) methodology. Br. J. Cancer 88, 1271–1276.

    Article  PubMed  CAS  Google Scholar 

  16. Parry, J. M., Shamsheer, M., and Skibinski, D. (1990) Restriction site mutation analysis, a proposed methodology for the detection and study of DNA base changes following mutagen exposure. Mutagenesis, 5, 209–212.

    Article  PubMed  CAS  Google Scholar 

  17. Jenkins G. J. S., Chalestori, M. H., Song H., and Parry, J. M. (1998) Mutation analysis using the restriction site mutation (RSM) assay. Mutat. Res. 405, 209–220

    Article  PubMed  CAS  Google Scholar 

  18. Perwez Hussain, S. P., Aguilar, F. Amstad, P., and Cerutti, P. (1994) Oxyradical induced mutagenesis of hotspot codons 248 and 249 of the human p53 gene. Oncogene 9, 2277–2281.

    Google Scholar 

  19. Morgan, C., Jenkins, G. J. S., Ashton, T., et al. (2003) The detection of p53 mutations in pre-cancerous gastric tissue using the RSM assay. Br. J. Cancer 89, 1314–1319.

    Article  PubMed  CAS  Google Scholar 

  20. Perwez Hussain, S., Amstad, P., Raja, K., et al. (2000) Increased p53 mutation load in noncancerous colon tissue from ulcerative colitis: a cancer prone chronic inflammatory disease, Cancer Res. 60, 333–3337.

    Google Scholar 

  21. Ehrlich, M. and Wang, R. H. Y. (1981) 5-Methylcytosine in eukaryotic DNA. Science 212, 1350–1357.

    Article  PubMed  CAS  Google Scholar 

  22. Toyota, M. and Issa, J. P. J. (2000) The role of DNA hypermethylation in human neoplasia. Electrophoresis 21, 329–333.

    Article  PubMed  CAS  Google Scholar 

  23. Fraga, M. E. and Esteller, M. (2002) DNA methylation: a profile of methods and applications Biotechniques 33, 632.

    PubMed  CAS  Google Scholar 

  24. Oakeley, E. J. (1999) DNA methylation analysis: a review of current methodologies. Pharmacol. Ther. 84, 389–400.

    Article  PubMed  CAS  Google Scholar 

  25. Puvvada, M. S., Hartley, J. A., Jenkins, T. C., and Thurston, D. E. (1993) A quantitative assay to measure the relative DNA-binding affinity of pyrrolo[2,1-c][1,4]benzodiazepine (pbd) antitumor antibiotics based on the inhibition of restriction-endonuclease BamHI. Nucleic Acids Res. 21, 3671–3675.

    Article  PubMed  CAS  Google Scholar 

  26. Denissenko, M. F., Venkatachalam, S., Ma, Y. H., and Wani, A. A. (1996) Site-specific induction and repair of benzo[a]pyrene diol epoxide DNA damage in human H-ras protooncogene as revealed by restriction cleavage inhibition Mutation Res. 36, 27–42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Jenkins, G.J.S. (2005). Restriction Enzymes. In: Walker, J.M., Rapley, R. (eds) Medical Biomethods Handbook. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1385/1-59259-870-6:025

Download citation

  • DOI: https://doi.org/10.1385/1-59259-870-6:025

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-288-9

  • Online ISBN: 978-1-59259-870-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics