Skip to main content

Probe Design, Production, and Applications

  • Protocol
Medical Biomethods Handbook

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

A probe is a nucleic acid molecule (single-stranded DNA or RNA) with a strong affinity with a specific target (DNA or RNA sequence). Probe and target base sequences must be complementary to each other, but depending on conditions, they do not necessarily have to be exactly complementary. The hybrid (probe-target combination) can be revealed when appropriate labeling and detection systems are used. Gene probes are used in various blotting and in situ techniques for the detection of nucleic acid sequences. In medicine, they can help in the identification of microorganisms and the diagnosis of infectious, inherited, and other diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keller, G. H. and Manak, M. M. (1989) DNA Probes, Stockton, New York.

    Google Scholar 

  2. Sambrook, J. and Russell, D. W. (2001) Molecular Cloning: A Laboratory Manual, 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  3. Karcher, S. J. (1995) Molecular Biology: A Project Approach, Academic, San Diego, CA.

    Google Scholar 

  4. Hugenholtz, P., Tyson, G. W., and Blackall, L. L. (2002) Design and evaluation of 16S rRNAtargeted oligonucleotide probes for fluorescence in situ hybridization, in Gene Probes: Principles and Protocols (Aquino de Muro, M. and Rapley, R., eds.), Humana, Totowa, NJ, pp. 29–42.

    Google Scholar 

  5. Boehringer Mannheim GmbH (1995) The DIG System User’s Guide for Filter Hybridisation, Boehringer Mannheim, Mannheim, Germany.

    Google Scholar 

  6. Boehringer Mannheim GmbH (1996) Nonradioactive In Situ Hybridisation Manual: Application Manual, 2nd ed. Boehringher Mannheim GmbH, Mannheim, Germany.

    Google Scholar 

  7. Alphey, L. and Parry, H. D. (1995) Making nucleic acid probes, in DNA cloning 1: Core Techniques (Glover, D. M. and Hames, B. D., eds.), IRL, Oxford, pp. 121–141.

    Google Scholar 

  8. Feinberg, A. P. and Vogelstein, B. (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Analy. Biochem. 132, 6–13.

    Article  CAS  Google Scholar 

  9. Feinberg, A. P. and Vogelstein, B. (1984) Addendum. Analy. Biochem. 137, 266–267.

    Article  CAS  Google Scholar 

  10. Aquino de Muro, M. and Priest, F. G. (1994) A colony hybridization procedure for the identification of mosquitocidal strains of Bacillus sphaericus on isolation plates. J. Invertebr. Pathol. 63, 310–313.

    Article  Google Scholar 

  11. Aquino de Muro, M. and Priest, F. G. (2000) Construction of chromosomal integrants of Bacillus sphaericus 2362 by conjugation with Escherichia coli. Res. Microbiol. 151, 547–555.

    Google Scholar 

  12. Garratt, L. C., McCabe, M. S., Power, J. B., and Davey, M. R. (2002) Detection of single-copy genes in DNA from transgenic plants, in Gene Probes: Principles and Protocols (Aquino de Muro, M. and Rapley, R., eds.), Humana, Totowa, NJ, pp. 211–222.

    Google Scholar 

  13. Hilario, E. (2002) Photobiotin labeling, in Gene Probes: Principles and Protocols (Aquino de Muro, M. and Rapley, R., eds.), Humana, Totowa, NJ, pp. 19–22.

    Google Scholar 

  14. Hilario, E. (2002) End labeling procedures, in Gene Probes: Principles and Protocols (Aquino de Muro, M. and Rapley, R., eds.), Humana, Totowa, NJ, pp. 13–18.

    Google Scholar 

  15. Promega Corp. (1996) Protocols and Applications Guide, 3rd ed., Promega Corp., Madison, WI.

    Google Scholar 

  16. Schleicher & Schuell, Inc. (1995) Blotting, Hybridization and Detection: An S&S Laboratory Manual, 6th ed., Schleicher & Schuell, Inc., Keene, NH.

    Google Scholar 

  17. Stahl, D. A. and Amman, R. (1991) Development and application of nucleic acid probes, in Nucleic Acid Techniques in Bacterial Systematics (Stackebrandt, E. and Goodfellow, M., eds.), Wiley, Chichester, pp. 205–244.

    Google Scholar 

  18. Brooker, J. D. Lockington, R. A. Attwood, G. T., and Miller, S. (1990) The use of gene and antibody probes in identification and enumeration of rumen bacterial species, in Gene Probes for Bacteria (Macario, A. J. L. and Conway de Macario, E., eds.), Academic, San Diego, CA, pp. 390–416.

    Google Scholar 

  19. Stahl, D. A. and Kane, M. D. (1992) Methods in microbial identification, tracking and monitoring of function. Curr. Opin. Biotechnol. 3, 244–252.

    Article  CAS  Google Scholar 

  20. Ward, D. M., Bateson, M. M., Weller, R., and Ruff-Roberts, A. L. (1992) Ribosomal RNA analysis of micro-organisms as they occur in nature. Adv. Microb. Ecol. 12, 219–286.

    CAS  Google Scholar 

  21. Orlow, I. and Cordon-Cardo, C. (2002) Evaluation of alterations in the tumor suppressor genes INK4A and INK4B in human bladder tumors, in Gene Probes: Principles and Protocols (Aquino de Muro, M. and Rapley, R., eds.), Humana, Totowa, NJ, pp. 43–59.

    Google Scholar 

  22. Mendoza-Leon, A., Luis, L., and Martinez, C. (2002) The *b-tubulin gene region as a molecular marker to distinguish Leishmania parasites, in Gene Probes: Principles and Protocols (Aquino de Muro, M. and Rapley, R., eds.), Humana, Totowa, NJ, pp. 61–83.

    Google Scholar 

  23. Brown, R. D. and Joy Ho, P. (2002) Detection of malignant plasma cells in the bone marrow and peripherical blood of patients with multiple myeloma, in Gene Probes: Principles and Protocols (Aquino de Muro, M. and Rapley, R., eds.), Humana, Totowa, NJ, pp. 85–91.

    Google Scholar 

  24. Nuovo, G J. (2002) Diagnosis of human papillomavirus using in situ hybridization and in situ polymerase chain reaction, in Gene Probes: Principles and Protocols (Aquino de Muro, M. and Rapley, R., eds.), Humana, Totowa, NJ, pp. 113–136.

    Google Scholar 

  25. Wang, Y., Pang, D., Zhang, Z., Zheng, H., Cao, J., and Shen J. (2003) Visual gene diagnosis of HBV and HCV based on nanoparticle probe amplification and silver staining enhancement. J. Med. Virol. 70(2), 205–211.

    Article  PubMed  CAS  Google Scholar 

  26. Cook, D. W., Bowers, J. C., and DePaola, A. (2002) Density of total and pathogenic (tdh+) Vibrio parahaemolyticus in Atlantic and Gulf Coast molluscan shellfish at harvest. J. Food Protect. 65(12), 1873–1880.

    Google Scholar 

  27. Dalsgaard, A., Serichantalergs, O., Forslund, A., et al. (2001) Clinical and environmental isolates of Vibrio cholerae serogroup O141 carry the CTX phage and the genes enconding the toxin-coregulated pili. J. Clin. Microbiol. 39(11), 4086–4092.

    Article  PubMed  CAS  Google Scholar 

  28. Kondo, S., Kongmuang, U., Kalnauwakul, S., Matsumoto, C., Chen, C. H., and Nishibuchi, M. (2001) Molecular epidemiologic analysis of Vibrio cholerae O1 isolated during the 1997–8 cholera epidemic in southern Thailand. Epidemiol. Infect. 127(1), 7–16.

    Article  PubMed  CAS  Google Scholar 

  29. Nair, G. B., Bag, P. K., Shimada, T., et al. (1995) Evaluation of DNA probes for specific detection of Vibrio cholerae O139 Bengal. J. Clin. Microbiol. 33(8), 2186–2187.

    PubMed  CAS  Google Scholar 

  30. Frech, G. and Schwarz, S. (2000) Molecular analysis of tetracycline resistance in Salmonella enterica subsp. enterica serovars Typhimurium, Enteritidis, Dublin Choleraesuis, Hadar and Saintpaul: construction and application of specific gene probes. J. Appl. Microbiol. 89(4), 633–641.

    Article  PubMed  CAS  Google Scholar 

  31. Mainil, J. G., Gerardin, J., and Jacquemin, E. (2000) Identification of the F17 fimbrial subunit-and adhesin-enconding (f17A and f17G) gene variants in necrotoxigenic Escherichia coli from cattle, pigs and humans. Vet. Microbiol. 73(4), 327–335.

    Article  PubMed  CAS  Google Scholar 

  32. Fujimoto, S., Umene, K., Saito, M., Horikawa, K., and Blaser, M. J. (2000) Restriction fragmentlength polymorphism analysis using random chromosomal gene probes for epidemiological analysis of Campylobacter jejuni infections. J. Clin. Microbiol. 38(4), 1664–1667.

    PubMed  CAS  Google Scholar 

  33. Kirkwood, C. D., Gentsch, J. R., and Glass, R. I. (1999) Sequence analysis of the NSP4 gene from human rotavirus strains isolated in the United States. Virus Genes 19(2), 113–122.

    Article  PubMed  CAS  Google Scholar 

  34. Santos, M. R. M., Lorenzi, H., Porcile, P., et al. (1999) Physical mapping of a 670-kb region of chromosomes XVI and XVII from the human protozoan parasite Trypanosoma cruzi encompassing the genes for two immunodominant antigens. Genome Res. 9(12), 1268–1276.

    Article  PubMed  CAS  Google Scholar 

  35. Radwanska, M., Magez, S., Perry-O’Keefe, H., et al. (2002) Direct detection and identification of African trypanosomes by fluorescence in situ hybridization with peptide nucleic acid probes. J. Clin. Microbiol. 40(11), 4295–4297.

    Article  PubMed  CAS  Google Scholar 

  36. Higgins, G. A. and Mah, V. H. (1989) In situ hybridisation approaches to human neurological disease, in Gene Probes (Conn, P. M., ed.), Academic, San Diego, CA, pp. 183–196.

    Google Scholar 

  37. Rigby, S., Procop, G. W., Haase, G., et al. (2002) Fluorescence in situ hybridization with peptide nucleic acid probes for rapid identification of Candida albicans directly from blood culture bottles. J. Clin. Microbiol. 40(6), 2182–2186.

    Article  PubMed  CAS  Google Scholar 

  38. Oliveira, K., Haase, G., Kurtzman, C., Hyldig-Nielsen, J. J., and Stender, H. (2001) Differentiation of Candida albicans and Candida dubliniensis by fluorescent in situ hybridization with peptide nucleic acid probes. J. Clin. Microbiol. 39(11), 4138–4141.

    Article  PubMed  CAS  Google Scholar 

  39. Cloud, J. L., Neal, H., Rosenberry, R., et al. (2002) Identification of Mycobacterium spp. by using a commercial 16S ribosomal DNA sequencing kit and additional sequencing libraries. J. Clin. Microbiol. 40(2), 400–406.

    Article  PubMed  CAS  Google Scholar 

  40. El Hajj, H. H., Marras, S. A. E., Tyagi, S., Kramer, F. R., and Alland, D. (2001) Detection of rifampin resistance in Mycobacterium tuberculosis in a single tube with molecular beacons. J. Clin. Microbiol. 39(11), 4131–4137.

    Article  PubMed  Google Scholar 

  41. Oliveira, K., Procop, G. W., Wilson, D., Coull, J., and Stender, H. (2002) Rapid identification of Staphylococcus aureus directly from blood cultures by fluorescence in situ hybridization with peptide nucleic acid probes. J. Clin. Microbiol. 40(1), 247–251.

    Article  PubMed  CAS  Google Scholar 

  42. Reddy, C. C., Jayakumar, R., Kumanan, K., and Nainar, A. M. (2002) Detection of rabies virus genome in brain tissues by using in situ hybridization. Indian J. Anim. Sci. 72(1), 3–5.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

de Muro, M.A. (2005). Probe Design, Production, and Applications. In: Walker, J.M., Rapley, R. (eds) Medical Biomethods Handbook. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1385/1-59259-870-6:013

Download citation

  • DOI: https://doi.org/10.1385/1-59259-870-6:013

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-288-9

  • Online ISBN: 978-1-59259-870-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics