Advertisement

SNaPshot for Pharmacogenetics by Minisequencing

  • Klaus Bender
Part of the Methods in Molecular Biology book series (MIMB, volume 297)

Abstract

Genetic polymorphisms of genes coding for metabolic enzymes are helpful to predict how an individual may respond to medication or drugs. The described approach for the identification of genetic variations for the cytochrome P450 enzymes CYP2D6 and CYP2C19 has been designed for the rapid genotyping of relevant alleles (CYP2D6**1, -**3, -**4, -**6, -**7, and -**8 and CYP2C19**1, -**2, -**3, -**4, and -**5) by performing polymerase chain reaction amplifications of genomic regions containing the SNP followed by a single-tube multiplex single base extension (minisquencing) reaction. This multiplex assay can easily be expanded for additional genes and single nucleotide polymorphisms (SNPs). Minisequencing is a sensitive, reproducible, and time-saving method for SNP typing that can be performed using ordinary laboratory equipment.

Key Words

SNPs pharmacogenetic CYP2D6 CYP2C19 minisequencing 

References

  1. 1.
    Syvanen, A. C. (2001) Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat. Rev. Genet. 2, 930–942.PubMedCrossRefGoogle Scholar
  2. 2.
    Ingelman-Sundberg, M. (2001) Pharmacogenetics: an opportunity for a safer and more efficient pharmacotherapy. J. Intern. Med. 250, 186–200.PubMedCrossRefGoogle Scholar
  3. 3.
    Pirmohamed, M., and Park, B.K. (2001) Genetic susceptibility to adverse drug reactions. Trends Pharmacol. Sci. 22, 298–305.PubMedCrossRefGoogle Scholar
  4. 4.
    Sanchez, J. J., Borsting, C., Hallenberg, C., Buchard, A., Hernandez, A., and Morling, N. (2003) Multiplex PCR and minisequencing of SNPs-a model with 35 Y chromosome SNPs. Forensic Sci. Int. 137, 74–84.PubMedCrossRefGoogle Scholar
  5. 5.
    Morley, J.M., Bark, J.E., Evans, C.E., Perry, J.G., Hewitt, C.A., and Tully, G. (1999) Validation of mitochondrial DNA minisequencing for forensic casework. Int. J. Legal Med. 112, 241–248.PubMedCrossRefGoogle Scholar
  6. 6.
    Steen, V. M., Andreassen, O. A., Daly, A. K., Tefre, T., Borresen, A.-L., Idle, J. R., and Gulbrandsen, A.-K. (1995) Detection of the poor metabolizer-associated CYP2D6(D) gene deletion allele by long-PCR technology. Pharmacogentetics 5, 215–223.CrossRefGoogle Scholar
  7. 7.
    Lundqvist, E., Johansson, I., and Ingelman-Sundberg, M. (1999) Genetic mechanisms for duplication and multiduplication of the human CYP2D6 gene and methods for detection of duplicated CYP2D6 genes. Gene 226, 327–338.PubMedCrossRefGoogle Scholar
  8. 8.
    Goldstein, J. A., and Blaisdell, J. (1996) Genetic tests which identify the principal defects in CYP2C19 responsible for the polymorphism in mephenytoin metabolism. Methods Enzymol. 272, 210–218.PubMedCrossRefGoogle Scholar
  9. 9.
    Xiao, Z. S., Goldstein, J. A., Xie, H. G., Blaisdell, J., Wang, W., Jiang, C. H., et al. (1997) Differences in the incidence of the CYP2C19 polymorphism affecting the Smephenytoin phenotype in Chinese Han and Bai populations and identification of a new rare CYP2C19 mutant allele. J. Pharmacol. Exp. Ther. 281, 604–609.PubMedGoogle Scholar
  10. 10.
    Ferguson, R. J., De Morais, S. M., Benhamou, S., Bouchardy, C., Blaisdell, J., Ibeanu, G., et al. (1998) A new genetic defect in human CYP2C19 mutation of the initiation codon is responsible for poor metabolism of S-mephenytoin. JPET 284, 356–361.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Klaus Bender
    • 1
  1. 1.Institut für RechtsmedizinMainzGermany

Personalised recommendations