Gene Transfer of MHC-Restricted Receptors

  • Helmut W. H. G. Kessels
  • Monika C. Wolkers
  • Ton N. M. Schumacher
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 109)


Adoptive therapy with allogeneic or tumor-specific T-cells has shown substantial clinical effects for several human tumors, but the widespread application of this strategy remains a daunting task. The antigen specificity of T-lymphocytes is solely determined by the T-cell receptor (TCR) α and β chains. Consequently, genetic transfer of TCR chains may form an alternative and potentially appealing strategy to impose a desirable tumor-antigen specificity onto cytotoxic or helper T-cell populations. In this strategy, autologous or donor-derived T-cell populations are equipped with a TCR of defined reactivity in short-term ex vivo cultures, and re-infusion of the redirected cells is used to supply T-cell reactivity against defined tumor-specific antigens. We have previously described the genetic introduction of T-cell receptor genes into peripheral T-cells in mouse model systems. Here we discuss the requirements for the successful genetic modification of murine T-lymphocytes and the subsequent use of such genetically modified cells in in vivo models.

Key Words

T-cell receptor gene therapy adoptive transfer immunotherapy retroviral vectors 


  1. 1.
    Dudley, M. E., Wunderlich, J. R., Robbins, P. F., et al. (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298, 850–854.PubMedCrossRefGoogle Scholar
  2. 2.
    Yee, C., Thompson, J. A., Byrd, D., et al. (2002) Adoptive T cell therapy using antigen-specific CD8+T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc. Natl. Acad. Sci. USA 99, 16,168–16,173.PubMedCrossRefGoogle Scholar
  3. 3.
    Dembic, Z., Haas, W., Weiss, S., et al. (1986) Transfer of specificity by murine alpha and beta T-cell receptor genes. Nature 320, 232–238.PubMedCrossRefGoogle Scholar
  4. 4.
    Kessels, H. W., Wolkers, M. C., and Schumacher, T. N. (2002) Adoptive transfer of T-cell immunity. Trends Immunol. 23, 5, 264–269.PubMedCrossRefGoogle Scholar
  5. 5.
    Kitamura, T. (1998) New experimental approaches in retro virus-mediated expression screening. Int. J. Hematol. 67, 351–359.PubMedCrossRefGoogle Scholar
  6. 6.
    Naviaux, R. K., Costanzi, E., Haas, M., and Verma, I. M. (1996) The pCL vector sys-tem: rapid production of helper-free, high-titer, recombinant retroviruses. J. Virol. 70, 5701–5705.PubMedGoogle Scholar
  7. 7.
    Kolen, S., Dolstra, H., van de Locht, L., et al. (2002) Biodistribution and retention time of retrovirally labeled T lymphocytes in mice is strongly influenced by the culture period before infusion. J. Immunother. 25, 385–395.PubMedCrossRefGoogle Scholar
  8. 8.
    Altman, J. D., Moss, P. A., Goulder, P. J., et al. (1996) Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96.PubMedCrossRefGoogle Scholar
  9. 9.
    Schepers, K., Toebes, M., Sotthewes, G., et al. (2002) Differential kinetics of antigen-specific CD4+and CD8+T cell responses in the regression of retrovirus-induced sarco-mas. J. Immunol. 169, 3191–3199.PubMedGoogle Scholar
  10. 10.
    Uckert, W., Becker, C., Gladow, M., et al. (2000) Efficient gene transfer into primary human CD8+T lymphocytes by MuLV-10A1 retrovirus pseudotype. Hum. Gene Ther. 11, 1005–1014.PubMedCrossRefGoogle Scholar
  11. 11.
    Masopust, D., Vezys, V., Marzo, A. L., and Lefrancois, L. (2001) Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417.PubMedCrossRefGoogle Scholar
  12. 12.
    Riddell, S. R., Elliott, M., Lewinsohn, D. A., et al. (1996) T-cell mediated rejection of gene-modified HIV-specific cytotoxic T lymphocytes in HIV-infected patients. Nat. Med. 2, 216–223.PubMedCrossRefGoogle Scholar
  13. 13.
    Jung, D., Jaeger, E., Cayeux, S., et al. (1998) Strong immunogenic potential of a B7 retro viral expression vector: generation of HLA-B7-restricted CTL response against select-able marker genes. Hum. Gene Ther. 9, 53–62.PubMedCrossRefGoogle Scholar
  14. 14.
    Stripecke, R., Carmen Villacres, M., Skelton, D., Satake, N., Halene, S., and Kohn, D. (1999) Immune response to green fluorescent protein: implications for gene therapy. Gene Ther. 6, 1305–1312.PubMedCrossRefGoogle Scholar
  15. 15.
    Skelton, D., Satake, N., and Kohn, D. B. (2001) The enhanced green fluorescent protein (eGFP) is minimally immunogenic in C57BL/6 mice. Gene Ther. 8, 1813–1814.PubMedCrossRefGoogle Scholar
  16. 16.
    Davodeau, F., Peyrat, M. A., Romagne, F., et al. (1995) Dual T cell receptor beta chain expression on human T lymphocytes. J. Exp. Med. 181, 1391–1398.PubMedCrossRefGoogle Scholar
  17. 17.
    Padovan, E., Giachino, C., Cella, M., Valitutti, S., Acuto, O., and Lanzavecchia, A. (1995) Normal T lymphocytes can express two different T cell receptor beta chains: implications for the mechanism of allelic exclusion. J. Exp. Med. 181, 1587–1591.PubMedCrossRefGoogle Scholar
  18. 18.
    Balomenos, D., Balderas, R. S., Mulvany, K. P., Kaye, J., Kono, D. H., and Theofilopoulos, A. N. (1995) Incomplete T cell receptor V beta allelic exclusion and dual V beta-expressing cells. J. Immunol. 155, 3308–3312.PubMedGoogle Scholar
  19. 19.
    Topham, D. J., Castrucci, M.R., Wingo, F.S., Belz, G.T., and Doherty, P.C. (2001) The role of antigen in the localization of naive, acutely activated, and memory CD8(+) T cells to the lung during influenza pneumonia. J. Immunol. 167, 6983–6990.PubMedGoogle Scholar
  20. 20.
    Moskophidis, D. and Kioussis, D. (1998) Contribution of virus-specific CD8+cytotoxic T cells to virus clearance or pathologic manifestations of influenza virus infection in a T cell receptor transgenic mouse model. J. Exp. Med. 188, 223–232.PubMedCrossRefGoogle Scholar
  21. 21.
    Hacein-Bey-Abina, S., von Kalle, C., Schmidt, M., et al. (2003) A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. 348, 255–256.PubMedCrossRefGoogle Scholar
  22. 22.
    van Os, R., Sheridan, T. M., Robinson, S., Drukteinis, D., Ferrara, J. L., and Mauch, P. M. (2001) Immunogenicity of Ly5 (CD45)-antigens hampers long-term engraftment follow-ing minimal conditioning in a murine bone marrow transplantation model. Stem Cells 19, 80–87.PubMedCrossRefGoogle Scholar
  23. 23.
    Gladow, M., Becker, C., Blankenstein, T., and Uckert, W. (2000) MLV-10A1 retrovirus pseudotype efficiently transduces primary human CD4+T lymphocytes. J. Gene Med. 2, 409–415.PubMedCrossRefGoogle Scholar
  24. 24.
    Kinsella, T. M. and Nolan, G. P. (1996) Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum. Gene Ther. 7, 1405–1413.PubMedCrossRefGoogle Scholar
  25. 25.
    Unutmaz, D., KewalRamani, V. N., Marmon, S., and Littman, D. R. (1999) Cytokine sig-nals are sufficient for HIV-1 infection of resting human T lymphocytes. J. Exp. Med. 189, 1735–1746.PubMedCrossRefGoogle Scholar
  26. 26.
    Cavalieri, S., Cazzaniga, S., Geuna, M., et al. (2003) Human T lymphocytes transduced by lentiviral vectors in the absence of TCR-activation maintain an intact immune compe-tence. Blood 102(2), 497–505.PubMedCrossRefGoogle Scholar
  27. 27.
    Labrecque, N., Whitfield, L. S., Obst, R., Waltzinger, C., Benoist, C., and Mathis, D. (2001) How much TCR does a T cell need? Immunity 15, 71–82.PubMedCrossRefGoogle Scholar
  28. 28.
    Zufferey, R., Donello, J. E., Trono, D., and Hope, T. J. (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J. Virol. 73, 2886–2892.PubMedGoogle Scholar
  29. 29.
    Schumacher, T. N. (2002) T-cell-receptor gene therapy. Nat Rev Immunol 7, 512–519.CrossRefGoogle Scholar
  30. 30.
    Eshhar, Z. (1997) Tumor-specific T-bodies: towards clinical application. Cancer Immunol. Immunother. 45, 131–136.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Helmut W. H. G. Kessels
    • 1
  • Monika C. Wolkers
    • 1
  • Ton N. M. Schumacher
    • 1
  1. 1.Department of ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands

Personalised recommendations