Skip to main content

Human Myoblasts and Muscle-Derived SP Cells

  • Protocol
Human Cell Culture Protocols

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 107))

  • 2593 Accesses

Abstract

Skeletal muscle cells can be used in vitro for the study of myogenesis, as well as in vivo as gene-delivery vehicles for the therapy of muscle and nonmuscle diseases. These skeletal muscle cells are derived from muscle satellite cells that lie between the basal lamina and the sarcolemma of differentiated muscle fibers (1). Normally quiescent after the period of muscle development and growth during fetal life and the early postnatal period, these cells are induced to proliferate upon muscle damage and fuse with existing muscle fibers. Satellite cells isolated and grown in vitro are called myoblasts. Myoblasts proliferate in mitogen-rich media, but upon reaching high cell density followed by exposure to mitogen-poor media, are induced to differentiate and become postmitotic. Muscle differentiation is characterized by the fusion of myoblasts to form multinucleated myotubes that express differentiationspecific proteins. In this chapter, methods are given for the isolation of myoblasts from human muscle tissue using two different techniques: (a) flow cytometry (2) and (b) cell cloning (3,4). Recent reports have also highlighted the existence of highly primitive cells within mouse skeletal muscle, whose relationship with satellite cells is still under study (5-7). These primitive cells have been purified using different methods and techniques, including the preplating technique (8-10) and the fluorescence-activated cell sorter (FACS) (11-14). Depending on the isolation technique, these cells have been named differently. Muscle SP cells have been isolated from mouse skeletal muscle by staining the dissociated primary muscle cells with the vital DNA dye Hoechst 33342, followed by FACS purification (11-14). Mouse muscle SP cells have demonstrated hematopoietic and myogenic differentiation potential both in vitro and in vivo (11-14) and these studies are being extended to human-derived SP cells. Methods to isolate human muscle SP cells from fetal and from adult skeletal muscle are also given. The methods in this chapter are applicable to muscle tissue from both fetal and postnatal donor as well as from normal and diseased individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mauro, A. (1961) Satellite cells of skeletal muscle fibers. J. Biophys. Biochem. Cytol. 9, 493ā€“495.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. Webster, C., Pavlath, G. K., Parks, D. R., Walsh, F. S., and Blau, H. M. (1988) Isolation of human myoblasts with the fluorescence-activated cell sorter. Exp. Cell Res. 174, 252ā€“265.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  3. Blau, H. M., Webster, C., and Pavlath, G. K. (1983) Defective myoblasts identified in Duchenne muscular dystrophy. Proc. Natl. Acad. Sci. USA 80, 4856ā€“4860.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  4. Webster, C. and Blau, H. M. (1990) Accelerated age-related decline in replicative life-span of Duchenne muscular dystrophy myoblasts: implications for cell and gene therapy. Somat. Cell Mol. Genet. 16, 557ā€“565.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  5. Zammit, P. and Beauchamp, J. (2001) The skeletal muscle satellite cell: stem cell or son of stem cell? Differentiation 68, 193ā€“204.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  6. Seale, P. and Rudnicki, M. A. (2000) A new look at the origin, function, and ā€œstem-cellā€ status of muscle satellite cells. Dev. Biol. 218, 115ā€“124.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  7. Seale, P., Sabourin, L. A., Girgis-Gabardo, A., Mansouri, A., Gruss, P., and Rudnicki, M. A. (2000) Pax7 is required for the specification of myogenic satellite cells [In Process Citation]. Cell 102, 777ā€“786.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  8. Qu, Z., Balkir, L., van Deutekom, J. C., Robbins, P. D., Pruchnic, R., and Huard, J. (1998) Development of approaches to improve cell survival in myoblast transfer therapy. J. Cell Biol. 142, 1257ā€“1267.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  9. Qu-Petersen, Z., Deasy, B., Jankowski, R., et al. (2002) Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J. Cell Biol. 157, 851ā€“864.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  10. Torrente, Y., Tremblay, J. P., Pisati, F., et al. (2001) Intraarterial injection of muscle-derived CD34(+)Sca-1(+) stem cells restores dystrophin in mdx mice. J. Cell Biol. 152, 335ā€“348.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  11. Gussoni, E., Soneoka, Y., Strickland, C. D., et al. (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401, 390ā€“394.

    PubMedĀ  CASĀ  Google ScholarĀ 

  12. Jackson, K. A., Mi, T., and Goodell, M. A. (1999) Hematopoietic potential of stem cells isolated from murine skeletal muscle [see comments]. Proc. Natl. Acad. Sci. USA 96, 14,482ā€“14,486.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  13. McKinney-Freeman, S. L., Jackson, K. A., Camargo, F. D., Ferrari, G., Mavilio, F., and Goodell, M. A. (2002) Muscle-derived hematopoietic stem cells are hematopoietic in origin. Proc. Natl. Acad. Sci. USA 99, 1341ā€“1346.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  14. Asakura, A., Seale, P., Girgis-Gabardo, A., and Rudnicki, M. A. (2002) Myogenic specification of side population cells in skeletal muscle. J. Cell Biol. 159, 123ā€“134.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  15. Walsh, F. S. and Ritter, M. A. (1981) Surface antigen differentiation during human myogenesis in culture. Nature 289, 60ā€“64.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  16. Blau, H. M. and Webster, C. (1981) Isolation and characterization of human muscle cells. Proc. Natl. Acad. Sci. USA 78, 5623ā€“5627.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  17. Ham, R. G., St. Clair, J. A., Webster, C., and Blau, H. M. (1988) Improved media for normal human muscle satellite cells: serum-free clonal growth and enhanced growth with low serum. In Vitro Cell Dev. Biol. 24, 833ā€“844.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  18. Schubert, W., Zimmermann, K., Cramer, M., and Starzinski-Powitz, A. (1989) Lymphocyte antigen Leu-19 as a molecular marker of regeneration in human skeletal muscle. Proc. Natl. Acad. Sci. USA 86, 307ā€“311.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  19. Illa, I., Leon-Monzon, M., and Dalakas, M. C. (1992) Regenerating and dener-vated human muscle fibers and satellite cells express neural cell adhesion molecule recognized by monoclonal antibodies to natural killer cells. Ann. Neurol. 31, 46ā€“52.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  20. Michaelis, D., Goebels, N., and Hohlfeld, R. (1993) Constitutive and cytokineinduced expression of human leukocyte antigens and cell adhesion molecules by human myotubes. Am. J. Pathol. 143, 1142ā€“1149.

    PubMedĀ  CASĀ  Google ScholarĀ 

  21. Furling, D., Coiffier, L., Mouly, V., et al. (2001) Defective satellite cells in congenital myotonic dystrophy. Hum. Mol. Genet. 10, 2079ā€“2087.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  22. Zhou, S., Schuetz, J. D., Bunting, K. D., et al. (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat. Med. 7, 1028ā€“1034.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  23. Zhou, S., Morris, J. J., Barnes, Y., Lan, L., Schuetz, J. D. and Sorrentino, B. P. (2002) Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo. Proc. Natl. Acad. Sci. USA 99, 12,339ā€“12,344.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  24. Goodell, M. A. (2002) Stem cell identification and sorting using the Hoechst 33342 side population (SP), in: Current Protocols in Cytometry, John Wiley, New York, pp. 9.18.11ā€“19.18.11.

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Pavlath, G.K., Gussoni, E. (2005). Human Myoblasts and Muscle-Derived SP Cells. In: Picot, J. (eds) Human Cell Culture Protocols. Methods in Molecular Medicineā„¢, vol 107. Humana Press. https://doi.org/10.1385/1-59259-861-7:097

Download citation

  • DOI: https://doi.org/10.1385/1-59259-861-7:097

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-222-3

  • Online ISBN: 978-1-59259-861-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics