Skip to main content

The Xenopus Embryo as a Model System for Studies of Cell Migration

  • Protocol
Cell Migration

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 294))

Abstract

In this chapter, we describe procedures for the microsurgical removal of cells and tissues from early-stage embryos of the amphibian Xenopus laevis. Using simple culture conditions and artificial substrates, these preparations undergo a variety of quantifiable cellular behaviors that closely mimic cell migration in vivo. Two general methods are described. The first includes procedures for obtaining a dorsal marginal zone explant from early gastrulae in order to investigate the sheet-like extension and migration of the mesendoderm that spreads to cover the inner surface of the blastocoel roof in intact embryos. This preparation allows high-resolution analyses of cellular and subcellular events in a contiguous tissue preparation. The second describes methods for the isolation of cranial neural crest cells from tailbud stage embryos. Cranial neural crest tissue cultured in vitro on fibronectin will undergo segmentation and migrate as streams of cells as they do in the developing head. Each of these robust preparations provides an excellent example of the migratory events that are possible to observe in vitro using amphibian embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keller, R., Davidson, L., Edlund, A., Elul, T., Ezin, M., Shook, D., et al. (2000) Mechanisms of convergence and extension by cell intercalation. Philos. Trans. R Soc. Lond. B Biol. Sci. 355, 897–922.

    Article  PubMed  CAS  Google Scholar 

  2. Keller, R. (2002) Shaping the vertebrate body plan by polarized embryonic cell movements. Science 298, 1950–1954.

    Article  PubMed  CAS  Google Scholar 

  3. Winklbauer, R., Nagel, M., Selchow, A., and Wacker, S. (1996) Mesoderm migration in the Xenopus gastrula. Int. J. Dev. Biol. 40, 305–311.

    PubMed  CAS  Google Scholar 

  4. Sadaghiani, B. and Thiebaud, C. H. (1987) Neural crest development in the Xenopus laevis embryo, studied by interspecific transplantation and scanning electron microscopy. Dev. Biol. 124, 91–110.

    Article  PubMed  CAS  Google Scholar 

  5. Davidson, L. A., Hoffstrom, B. G., Keller, R., and DeSimone, D. W. (2002) Mesendoderm extension and mantle closure in Xenopus laevis gastrulation: combined roles for integrin α5, β1, fibronectin, and tissue geometry. Dev. Biol. 242, 109–129.

    Article  PubMed  CAS  Google Scholar 

  6. Alfandari, D., Cousin, H., Gaultier, A., Hoffstrom, B. G., and DeSimone, D. W. (2003) Integrin α5 β1 supports the migration of Xenopus cranial neural crest on fibronectin. Dev. Biol. 60, 449–464.

    Article  Google Scholar 

  7. Sater, A. K., Steinhardt, R. A., and Keller, R. (1993) Induction of neuronal differentiation by planar signals in Xenopus embryos. Dev. Dyn. 197, 268–280.

    Article  PubMed  CAS  Google Scholar 

  8. Kay, B. K. and Peng, H. B. (1991) Xenopus laevis: Practical Uses in Cell and Molecular Biology, Academic Press, New York, NY.

    Google Scholar 

  9. Sive, H. L., Grainger, R. M., and Harland, R. M. (2000) Early Development of Xenopus Laevis: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  10. Wallingford, J. B., Rowning, B. A., Vogeli, K. M., Rothbacher, U., Fraser, S. E., and Harland, R. M. (2000) Disheveled controls cell polarity during Xenopus gas-trulation. Nature 405, 81–85.

    Article  PubMed  CAS  Google Scholar 

  11. Na, J., Marsden, M., and DeSimone, D. W. (2003) Differential regulation of cell adhesive functions by integrin α subunit cytoplasmic tails in vivo. J. Cell Sci. 116, 2333–2343.

    Article  PubMed  CAS  Google Scholar 

  12. Nieuwkoop, P. D. and Faber, J. (1994) Normal Table of Xenopus laevis (Daudin), Garland Publishing, Inc., New York, NY.

    Google Scholar 

  13. Sokal, R. R. (1981) Biometry, W. H. Freeman and Company, New York, NY.

    Google Scholar 

  14. Ezin, A. M., Skoglund, P., and Keller, R. (2003) The midline (notochord and notoplate) patterns the cell motility underlying convergence and extension of the Xenopus neural plate. Dev. Biol. 256, 100–114.

    Article  PubMed  CAS  Google Scholar 

  15. Davidson, L. A. and Keller, R. E. (1999) Neural tube closure in Xenopus laevis involves medial migration, directed protrusive activity, cell intercalation and convergent extension. Development 126, 4547–4556.

    PubMed  CAS  Google Scholar 

  16. Batschelet, E. (1981) Circular Statistics in Biology, Academic Press, New York, NY.

    Google Scholar 

  17. Elul, T., Koehl, M. A., and Keller, R. (1997) Cellular mechanism underlying neural convergent extension in Xenopus laevis embryos. Dev. Biol. 191, 243–258.

    Article  PubMed  CAS  Google Scholar 

  18. Borchers, A., Epperlein, H. H., and Wedlich, D. (2000) An assay system to study migratory behavior of cranial neural crest cells in Xenopus. Dev. Genes Evol. 210, 217–222.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

DeSimone, D.W., Davidson, L., Marsden, M., Alfandari, D. (2005). The Xenopus Embryo as a Model System for Studies of Cell Migration. In: Guan, JL. (eds) Cell Migration. Methods in Molecular Biology™, vol 294. Humana Press. https://doi.org/10.1385/1-59259-860-9:235

Download citation

  • DOI: https://doi.org/10.1385/1-59259-860-9:235

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-382-4

  • Online ISBN: 978-1-59259-860-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics