Skip to main content

Angiogenesis Assays in the Chick CAM

  • Protocol
Cell Migration

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 294))

Abstract

The growth of new blood vessels from pre-existing vascular elements, or angiogenesis, involves coordinated signals to the adhesion, migration, and survival machinery within the target endothelial cell. Agents that interfere with any of these processes may therefore influence angiogenesis. Here, we describe the angiogenesis assay in the chick chorioallantoic membrane (CAM). The CAM is a useful tool to studying angiogenesis because 1) it is amenable to both intravascular and topical administration of study agents, 2) it is a relatively rapid assay, and 3) it can be adapted very easily to study angiogenesis-dependent processes, such as tumor growth. Importantly, the CAM provides a physiological setting that permits investigation of pro- and anti-angiogenic agent interactions in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keshet, E. and Ben-Sasson, S. A. (1999) Anticancer drug targets: approaching angiogenesis. J. Clin. Invest. 104, 1497–1501.

    Article  PubMed  CAS  Google Scholar 

  2. Folkman, J. (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1, 27–31.

    Article  PubMed  CAS  Google Scholar 

  3. Auerbach, R., Auerbach, W., and Polakowski, I. (1991) Assays for angiogenesis: a review. Pharmacol. Ther. 51, 1–11.

    Article  PubMed  Google Scholar 

  4. Brooks, P. C, Clark, R. A. F., and Cheresh D. A. (1994) Requirement for vascular integrin αvβ3 for angiogenesis. Science 264, 569–571.

    Article  PubMed  CAS  Google Scholar 

  5. Ingber, D., Fujita, T., Kishimoto, S., Sudo, K., Kanamaru, T., Brem, H., and Folkman, J. (1990) Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumor growth. Nature 348, 555–557.

    Article  PubMed  CAS  Google Scholar 

  6. Nguyen, M., Shing, Y., and Folkman, J. (1994) Quantitation of angiogenesis and antiangiogenesis in the chick embryo chorioallantoic membrane. Microvasc. Res. 47, 31–40.

    Article  PubMed  CAS  Google Scholar 

  7. Brooks, P. C, Mongomery, A. M. P., Rosenfeld, M., Reisfeld R. A., Hu, T., Klier, G., and Cheresh, D. A. (1994) Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79, 1157–1164.

    Article  PubMed  CAS  Google Scholar 

  8. Eliceiri, B. P., Klemke, R., Stromblad, S., and Cheresh, D. A. (1998) Integrin αvβ3 requirement for sustained mitogen-activated protein kinase activity during angiogenesis. J. Cell Biol. 140, 1255–1263.

    Article  PubMed  CAS  Google Scholar 

  9. Kusaka, M., Sudo, K., Fujita, T., Marui, S., Itoh, F., Ingber, D., et al. (1991) Potent anti-angiogenic action of AGM-1470: comparison to the fumagillin parent. Biochem. Biophys. Res. Commun. 174, 1070–1076.

    Article  PubMed  CAS  Google Scholar 

  10. Boudreau, N., Andrews, C., Srebrow, A., Ravanpay, A., and Cheresh, D. A. (1997) Induction of the angiogenic phenotype by Hox D3. J. Cell Biol. 139, 257–264.

    Article  PubMed  CAS  Google Scholar 

  11. Jakob, W., Jentzsch, K. D., Mauersberger, B., and Heder, G. (1978) The chick embryo choriallantoic membrane as a bioassay for angiogenesis factors: reactions induced by carrier materials. Exp. Pathol. (Jena) 15, 241–249.

    CAS  Google Scholar 

  12. Kim, J., Yu, W., Kovalski, K., and Ossawski, L. (1998) Requirement for specific proteases in cancer cell intravasation as revealed by a novel semiquantitative PCR-based assay. Cell 94, 353–362.

    Article  PubMed  CAS  Google Scholar 

  13. Zijlstra, A., Mellor, R., Panzarella, G., Aimes, R. T., Hooper, J. D., Marchenko, N. D., and Quigley, J. P. (2002) A quantitative analysis of rate-limiting steps in the metastatic cascade using human-specific real-time polymerase chain reaction. Cancer Res. 62, 7083–7092.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Storgard, C., Mikolon, D., Stupack, D.G. (2005). Angiogenesis Assays in the Chick CAM. In: Guan, JL. (eds) Cell Migration. Methods in Molecular Biology™, vol 294. Humana Press. https://doi.org/10.1385/1-59259-860-9:123

Download citation

  • DOI: https://doi.org/10.1385/1-59259-860-9:123

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-382-4

  • Online ISBN: 978-1-59259-860-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics