Skip to main content

Nanoelectrodes Integrated in Atomic Force Microscopy Cantilevers for Imaging of In Situ Enzyme Activity

  • Protocol
Protein Nanotechnology

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 300))

  • 1169 Accesses

Summary

For investigation of laterally resolved information on biological activity, techniques for simultaneously obtaining complementary information correlated in time and space are required. In this context, recent developments in scanning probe microscopy are aimed at information on the sample topography and simultaneously on the physical and chemical properties at the nanometer scale. With the integration of submicro- and nanoelectrodes into atomic force microscopy (AFM) probes using microfabrication techniques, an elegant approach combining scanning electrochemical microscopy with AFM is demonstrated. This instrumentation enables simultaneous imaging of topography and obtainment of laterally resolved electrochemical information in AFM tapping mode. Hence, topographical and electrochemical information on soft surfaces (e.g., biological species) and polymers can be obtained. The functionality of tip-integrated electrodes is demonstrated by simultaneous electrochemical and topographical studies of an enzyme-modified micropattern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Binnig, G., Quate, C. F., and Gerber, C. (1986) Atomic force microscopy. Phys. Rev. Lett. 56, 930–933.

    Article  PubMed  Google Scholar 

  2. Liu, H. Y., Fan, F.-R. F., Lin, C. W., and Bard, A. J. (1986) Scanning electrochemical and tunneling ultramicroelectrode microscope for high-resolution examination of electrode surfaces in solution. J. Am. Chem. Soc. 108, 3838, 3839.

    Article  CAS  Google Scholar 

  3. Engstrom, R. C., Weber, M., Wunder, D. J., Burgess, R., and Winquist, S. (1986) Measurements within the diffusion layer using a microelectrode probe. Anal. Chem. 58, 844–848.

    Article  CAS  Google Scholar 

  4. Kwak, J. and Bard, A. J. (1989) Scanning electrochemical microscopy: theory of the feedback mode. Anal. Chem. 61, 1221–1227.

    Article  CAS  Google Scholar 

  5. Gardner, C. E. and Macpherson, J. V. (2002) Atomic force microscopy probes go electrochemical. Anal. Chem. 74, 576A–584A.

    Article  PubMed  Google Scholar 

  6. Kranz, C., Friedbacher, G., Mizaikoff, B., Lugstein, A., Smoliner, J., and Bertagnolli, E. (2001) Integrating an ultramicroelectrode in an AFM cantilever: combined technology for enhanced information. Anal. Chem. 73, 2491–2500.

    Article  PubMed  CAS  Google Scholar 

  7. Krantz, C., Mizaikoff, B., Lugstein, A., and Bertagnolli, E. (2002) Integrating an ultramicroelectrode in an AFM cantileuer: toward the development of combined microsensing imaging tools: in Environmental Electrochemistry Analysis of Trace Element Biogeochemistry (Taillefert, M. and Rozan, T. F., eds.), American Chemical Society, Washington, DC, pp. 320–333.

    Chapter  Google Scholar 

  8. Lugstein, A., Bertagnolli, E., Kranz, C., Kueng, A., and Mizaikoff, B. (2002) Integrating micro-and nanoelectrodes into atomic force microscopy cantilevers using focused ion beam techniques. Appl. Phys. Lett. 81, 349–351.

    Article  CAS  Google Scholar 

  9. Kueng, A., Kranz, C., Mizaikoff, B., Lugstein, A., and Bertagnolli, E. (2003) Combined scanning electrochemical atomic force microscopy for tapping mode imaging. Appl. Phys. Lett. 82, 1592–1594.

    Article  CAS  Google Scholar 

  10. Hansma, P. K., Cleveland, J. P., Radmacher, M., et al. (1994) Tapping mode atomic force microscopy in liquids. Appl. Phys. Lett. 64, 1738–1740.

    Article  CAS  Google Scholar 

  11. Putman, C. A. J., van der Werf, K. O., De Grooth, B. G., Van Hulst, N. F., and Greve, J. (1994) Tapping mode atomic force microscopy in liquid. Appl. Phys. Lett. 64, 2454–2456.

    Article  CAS  Google Scholar 

  12. Le Grimellec, C., Giocondi, M. C., Pujol, R., and Lesniewska, E. (2000) Tapping mode atomic force microscopy allows the in situ imaging of fragile membrane structures and of intact cell surfaces at high resolution. Single Molecules 1, 105–107.

    Article  Google Scholar 

  13. Knoll, A., Magerle, R., and Krausch, G. (2001) Tapping mode atomic force microscopy on polymers: where is the true sample surface? Macromolecules 34, 4159–4165.

    Article  CAS  Google Scholar 

  14. Kueng, A., Kranz, C., Lugstein, A., Bertagnolli, E., and Mizaikoff, B. (2003) Integrated AFM-SECM in tapping mode: simultaneous topographical and electrochemical imaging of enzyme activity. Angew. Chem. Int. Ed. 42, 3237–3240.

    Article  Google Scholar 

  15. Kueng, A., Kranz, C., and Mizaikoff, B. (2003) Scanning probe microscopy with integrated biosensors. Sens. Lett. 1, 2–15.

    Article  CAS  Google Scholar 

  16. Kueng, A., Kranz, C., and Mizaikoff, B. (2004) Amperometric ATP-biosensor based on polymer entrapped enzymes. Biosens. Bioelectron. 19, 1301–1307.

    Article  PubMed  CAS  Google Scholar 

  17. Kranz, C., Kueng, A., Lugstein, A., Bertagnolli, E., and Mizaikoff, B. (2004) Mapping of enzyme activity by detection of enzymatic products during AFM imaging with integrated SECM-AFM probes. Ultramicroscopy 100, 127–134.

    Article  PubMed  CAS  Google Scholar 

  18. Heintz, E. L. H., Kranz, C., Mizaikoff, B., Noh, H.-S., Hesketh, P., Lugstein, A., and Bertagnolli, E. (2001) Characterization of parylene coated combined scanning probe tips for in-situ electrochemical and topographical imaging, in Proceedings of the IEEE Nanotechnology Conference.

    Google Scholar 

  19. Lee, Y., Amemya, S., and Bard, A. J. (2001) Scanning electrochemical microscopy. 41. Theory and characterization of ring electrodes. Anal. Chem. 73, 2261–2267.

    Article  PubMed  CAS  Google Scholar 

  20. Smythe, W. R. (1951) The capacitance of a circular annulus. J. Appl. Phys. 22, 1499–1501.

    Article  Google Scholar 

  21. Szabo, A. J. (1987) Theory of current at microelectrodes: application to ring electrodes. J. Phys. Chem. 91, 3108–3111.

    Article  CAS  Google Scholar 

  22. Kurzawa, C., Hengstenberg, A., and Schuhmann, W. (2002) Immobilization method for the preparation of biosensors based on pH shift-induced deposition of biomolecule-containing polymer films. Anal. Chem. 74, 355–361.

    Article  PubMed  CAS  Google Scholar 

  23. Wittstock, G. (2001) Modification and characterization of artificially patterned enzymatically active surfaces by scanning electrochemical microscopy. Fresenius J. Anal. Chem. 370, 303–315.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation (grant 0216368 within the program Biocomplexity in the Environment), the National Institute of Health (grant EB00058), and the Fonds zur Förderung der wissenschaftlichen Forschung Austria (grants P14122-CHE and J2230).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Kueng, A., Kranz, C., Lugstein, A., Bertagnolli, E., Mizaikoff, B. (2005). Nanoelectrodes Integrated in Atomic Force Microscopy Cantilevers for Imaging of In Situ Enzyme Activity. In: Vo-Dinh, T. (eds) Protein Nanotechnology. Methods in Molecular Biology™, vol 300. Humana Press. https://doi.org/10.1385/1-59259-858-7:403

Download citation

  • DOI: https://doi.org/10.1385/1-59259-858-7:403

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-310-7

  • Online ISBN: 978-1-59259-858-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics