Skip to main content

Construction of Ordered Protein Arrays

  • Protocol
Book cover Protein Nanotechnology

Summary

Artificially ordered protein arrays provide a facile approach to a variety of problems in biology and nanoscience. Current demonstration systems use either nucleic acid tethers or methyltransferase fusions in order to target proteins or peptides of interest to nucleic acid scaffolds. These demonstrations point to the large number of useful devices and assemblies that can be envisioned using this approach, including smart biological probes and drug delivery systems. In principle, these systems are now capable of imitating the earliest forms of prebiotic organisms and can be expected to reach the complexity of a small virus in the near future. Third-generation methyltransferase inhibitors provide an example of a smart chemotherapeutics that can be constructed with this approach. We describe the use of mechanistic enzymology, computer-aided design, and microfluidic chip-based capillary electrophoresis in assessing the final assembly and testing of designs of this type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yun, C. S., Khitrov, G. A., Vergona, D. E., Reich, N. O., and Strouse, G. F. (2002) Enzymatic manipulation of DNA-nanomaterial constructs. J. Am. Chem. Soc. 124, 7644, 7645.

    Article  PubMed  CAS  Google Scholar 

  2. Seeman, N. C. (1991) Construction of three-dimensional stick figures from branched DNA. DNA Cell. Biol. 10, 475–486.

    Article  PubMed  CAS  Google Scholar 

  3. Gil, A., de Pablo, P. J., Colchero, J., Gómez-Herrero, J., and Baró, A. M. (2002) Electrostatic scanning force microscopy images of long molecules: single-walled carbon nanotubes and DNA. Nanotechnology 13, 309–313.

    Article  CAS  Google Scholar 

  4. Yurke, B., Turberfield, A. J., Mills, A. P. Jr., Simmel, F. C., and Neumann, J. L. (2000) A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608.

    Article  PubMed  CAS  Google Scholar 

  5. Gibson, T. J. and Lamond, A. I. (1990) Metabolic complexity in the RNA world and implications for the origin of protein synthesis. J. Mol. Evol. 30, 7–15.

    Article  PubMed  CAS  Google Scholar 

  6. Woese, C. R. (2002) On the evolution of cells. Proc. Natl. Acad. Sci. USA 99, 8742–8747.

    Article  PubMed  CAS  Google Scholar 

  7. Niemeyer, C. M., Adler, M., Gao, S., and Chi, L. (2000) Supramolecular nanocircles consisting of streptavidin and DNA. Angew. Chem. Int. Ed. Engl. 39, 3055–3059.

    PubMed  CAS  Google Scholar 

  8. Niemeyer, C. M., Sano, T., Smith, C. L., and Cantor, C. R. (1994) Oligonucleotide-directed self-assembly of proteins: semisynthetic DNA—streptavidin hybrid molecules as connectors for the generation of macroscopic arrays and the construction of supramolecular bioconjugates. Nucleic Acids Res. 22, 5530–5539.

    Article  PubMed  CAS  Google Scholar 

  9. Niemeyer, C. M., Koehler, J., and Wuerdemann, C. (2002) DNA-directed assembly of bienzymic complexes from in vivo biotinylated NAD(P)H:FMN oxidoreductase and luciferase. Chembiochem. 3, 242–245.

    Article  PubMed  CAS  Google Scholar 

  10. Smith, S. S. (1995) Nucleoprotein-based nanoscale fabrication. Biol. Biomed. Sci. Technol. Div. Office of Naval Research (ONR) 34196-3, 161, 162.

    Google Scholar 

  11. Smith, S. S., Niu, L., Baker, D. J., Wendel, J. A., Kane, S. E., and Joy, D. S. (1997) Nucleoprotein-based nanoscale assembly. Proc. Natl. Acad. Sci. USA 94, 2162–2167.

    Article  PubMed  CAS  Google Scholar 

  12. Klimasauskas, S., Kumar, S., Roberts, R. J., and Cheng, X. (1994) HhaI methyltransferase flips its target base out of the DNA helix. Cell 76, 357–369.

    Article  PubMed  CAS  Google Scholar 

  13. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., and Bourne, P. E. (2000) The protein data bank. Nucleic Acids Res. 28, 235–242.

    Article  PubMed  CAS  Google Scholar 

  14. Ponder, J. W. and Case, D. A. (2003) Force fields for protein simulations. Adv. Protein Chem. 66, 27–85.

    Article  PubMed  CAS  Google Scholar 

  15. Schroeder, S. G. and Samudzi, C. T. (1997) Structural studies of EcoRII methylase: exploring similarities among methylases. Protein Eng. 10, 1385–1393.

    Article  PubMed  CAS  Google Scholar 

  16. Smith, S. S. (2001) A self-assembling nanoscale camshaft: implications for nanoscale materials and devices constructed from proteins and nucleic acids. Nano Lett. 1, 51–56.

    Article  CAS  Google Scholar 

  17. Topfer, R., Matzeit, V., Gronenborn, B., Schell, J., and Steinbiss, H. H. (1987) A set of plant expression vectors for transcriptional and translational fusions. Nucleic Acids Res. 15, 5890.

    Article  PubMed  CAS  Google Scholar 

  18. Kosykh, V. G., Solonin, A. S., Buryanov Y. I., and Bayev, A. A. (1981) Overproduction of the EcoRII endonuclease and methylase by Escherichia coli strains carrying recombinant plasmids constructed in vitro. Biochim. Biophys. Acta 655, 102–106.

    PubMed  CAS  Google Scholar 

  19. Buryanov, Y. I., Bogdarina, I. G., and Bayev, A. A. (1978) Site specificity and chromatographic properties of E. coli K12 and EcoRII DNA-cytosine methylases. FEBS Lett. 88, 251–254.

    Article  PubMed  CAS  Google Scholar 

  20. Clark, J., Shevchuk, T., Swiderski, P. M., Dabur, R., Crocitto, L. E., Buryanov, Y. I., and Smith, S. S. (2003) Mobility-shift analysis with microfluidics chips. Biotechniques 35, 548–554.

    PubMed  CAS  Google Scholar 

  21. Richards, E. J. and Elgin, S. C. (2002). Epigenetic codes for heterochromatin formation and silencing: rounding up the usual suspects. Cell 108, 489–500.

    Article  PubMed  CAS  Google Scholar 

  22. Smith, S. S. and Crocitto, L. (1999) DNA methylation in eukaryotic chromosome stability revisited: DNA methyltransferase in the management of DNA conformation space. Mol. Carcinog. 26, 1–9.

    Article  PubMed  CAS  Google Scholar 

  23. Smith, S. S. (2000) Gilbert’s conjecture: the search for DNA (cytosine-5) demethylases and the emergence of new functions for eukaryotic DNA (cytosine-5) methyltransferases. J. Mol. Biol. 302, 1–7.

    Article  PubMed  CAS  Google Scholar 

  24. Baylin, S. and Bestor, T. H. (2002) Altered methylation patterns in cancer cell genomes: cause or consequence? Cancer Cell 1, 299–305.

    Article  PubMed  CAS  Google Scholar 

  25. Smith, S. S. (1994) Biological implications of the mechanism of action of human DNA (cytosine-5)methyltransferase. Prog. Nucleic Acid Res. Mol. Biol. 49, 65–111.

    Article  PubMed  CAS  Google Scholar 

  26. Smith, S. S., Laayoun, A., Lingeman, R. G., Baker, D. J., and Riley, J. (1994) Hypermethylation of telomere-like foldbacks at codon 12 of the human c-Ha-ras gene and the trinucleotide repeat of the FMR-1 gene of fragile X. J. Mol. Biol. 243, 143–151.

    Article  PubMed  CAS  Google Scholar 

  27. Chiurazzi, P., Pomponi, M. G., Pietrobono, R., Bakker, C. E., Neri, G., and Oostra, B. A. (1999) Synergistic effect of histone hyperacetylation and DNA demethylation in the reactivation of the FMR1 gene. Hum. Mol. Genet. 8, 2317–2323.

    Article  PubMed  CAS  Google Scholar 

  28. Cameron, E. E., Bachman, K. E., Myohanen, S., Herman, J. G., and Baylin, S. B. (1999) Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat. Genet. 21, 103–107.

    Article  PubMed  CAS  Google Scholar 

  29. Goffin, J. and Eisenhauer, E. (2002) DNA methyltransferase inhibitors: state of the art. Ann. Oncol. 13, 1699–1716.

    Article  PubMed  CAS  Google Scholar 

  30. Brown, R. and Strathdee, G. (2002) Epigenetic cancer therapies: DNA methyltransferase inhibitors. Expert Opin. Investig. Drugs 11, 747–754.

    Article  PubMed  Google Scholar 

  31. Christman, J. K. (2002) 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 21, 5483–5495.

    Article  PubMed  CAS  Google Scholar 

  32. Stewart, D. J., Donehower, R. C., Eisenhauer, E. A., Wainman, N., Shah, A. K., Bonfils, C., MacLeod, A. R., Besterman, J. M., and Reid, G. K. (2003) A phase I pharmacokinetic and pharmacodynamic study of the DNA methyltransferase 1 inhibitor MG98 administered twice weekly. Ann. Oncol. 14, 766–774.

    Article  PubMed  CAS  Google Scholar 

  33. El-Osta, A. (2003) On the use of DNA methylation inhibitors and the reversal of transcriptional silencing. Blood 101, 1656; author reply 1657, 1658.

    Article  PubMed  CAS  Google Scholar 

  34. Momparler, R. L., Rivard, G. E., and Gyger, M. (1985) Clinical trial on 5-aza-2′-deoxycytidine in patients with acute leukemia. Pharmacol. Ther. 30, 277–286.

    Article  PubMed  CAS  Google Scholar 

  35. Creagan, E. T., Schaid, D. J., Hartmann, L. C., and Loprinzi, C. L. (1993) A phase II study of 5,6-dihydro-5-azacytidine hydrochloride in disseminated malignant melanoma. Am. J. Clin. Oncol. 16, 243, 244.

    Article  PubMed  CAS  Google Scholar 

  36. Thibault, A., Figg, W. D., Bergan, R. C., Lush, R. M., Myers, C. E., Tompkins, A., Reed, E., and Samid, D. (1998) A phase II study of 5-aza-2′deoxycytidine (decitabine) in hormone independent metastatic (D2) prostate cancer. Tumori 84, 87–89.

    PubMed  CAS  Google Scholar 

  37. Smith, S. S., Lingeman, R. G., and Kaplan, B. E. (1992) Recognition of foldback DNA by the human DNA (cytosine-5-)-methyltransferase. Biochemistry 31, 850–854.

    Article  PubMed  CAS  Google Scholar 

  38. Smith, S. S., Kaplan, B. E., Sowers, L. C., and Newman, E. M. (1992) Mechanism of human methyl-directed DNA methyltransferase and the fidelity of cytosine methylation. Proc. Natl. Acad. Sci. USA 89, 4744–4748.

    Article  PubMed  CAS  Google Scholar 

  39. Knox, J. D., Araujo, F. D., Bigey, P., Slack, A. D., Price, G. B., Zannis-Hadjopoulos, M., and Szyf, M. (2000) Inhibition of DNA methyltransferase inhibits DNA replication. J. Biol. Chem. 275, 17,986–17,990.

    Article  PubMed  CAS  Google Scholar 

  40. Bigey, P., Knox, J. D., Croteau, S., Bhattacharya, S. K., Theberge, J., and Szyf, M. (1999) Modified oligonucleotides as bona fide antagonists of proteins interacting with DNA: hairpin antagonists of the human DNA methyltransferase. J. Biol. Chem. 274, 4594–4606.

    Article  PubMed  CAS  Google Scholar 

  41. Smith, S. S. and Kaplan, B. E. (1996) Mechanism-based inhibitors of DNA methyltransferase. US patent 5,503,975.

    Google Scholar 

  42. Kho, M. R., Baker, D. J., Laayoun, A., and Smith, S. S. (1998) Stalling of human DNA (cytosine-5) methyltransferase at single-strand conformers from a site of dynamic mutation. J. Mol. Biol. 275, 67–79.

    Article  PubMed  CAS  Google Scholar 

  43. Clark, J., Shevchuk, T., Kho, M. R., and Smith, S. S. (2003) Methods for the design and analysis of oligodeoxynucleotide-based DNA (cytosine-5)methyltransferase inhibitors. Anal. Biochem. 321, 50–64.

    Article  PubMed  CAS  Google Scholar 

  44. Wendel, J. A. and Smith, S. S. (1998) Uracil as an alternative to 5-fluorocytosine in addressable protein targeting. Nanotechnology 9, 297–304.

    Article  CAS  Google Scholar 

  45. Zhou, L., Cheng, X., Connolly, B. A., Dickman, M. J., Hurd, P. J., and Hornby, D. P. (2002) Zebularine: a novel DNA methylation inhibitor that forms a covalent complex with DNA methyltransferases. J. Mol. Biol. 321, 591–599.

    Article  PubMed  CAS  Google Scholar 

  46. Smith, S. S., Lingeman, R. G., and Kaplan, B. E. (1992) Recognition of foldback DNA by the human DNA (cytosine-5)-methyltransferase. Biochemistry 31, 850–854.

    Article  PubMed  CAS  Google Scholar 

  47. Christman, J. K., Sheikhnejad, G., Marasco, C. J., and Sufrin, J. R. (1995) 5-Methyl-2′-deoxycytidine in single-stranded DNA can act in cis to signal de novo DNA methylation. Proc. Natl. Acad. Sci. USA 92, 7347–7351.

    Article  PubMed  CAS  Google Scholar 

  48. Laayoun, A. and Smith, S. S. (1995) Methylation of slipped duplexes, snapbacks and cruciforms by human DNA(cytosine-5)methyltransferase. Nucleic Acids Res. 23, 1584–1589.

    Article  PubMed  CAS  Google Scholar 

  49. Szyf, M. (1998) Targeting DNA methyltransferase in cancer. Cancer Metastasis Rev. 17, 219–231.

    Article  PubMed  CAS  Google Scholar 

  50. Smith, S. S., Hardy, T. A., and Baker, D. J. (1987) Human DNA (cytosine-5)methyltransferase selectively methylates duplex DNA containing mispairs. Nucleic Acids Res. 15, 6899–6916.

    Article  PubMed  CAS  Google Scholar 

  51. Smith, S. S., Kan, J. L., Baker, D. J., Kaplan, B. E., and Dembek, P. (1991) Recognition of unusual DNA structures by human DNA (cytosine-5)methyltransferase. J. Mol. Biol. 217, 39–51.

    Article  PubMed  CAS  Google Scholar 

  52. Chaplin, M. F. and Bucke, C. (1990) Enzyme Technology, University Press, Cambridge.

    Google Scholar 

  53. Warmuth, R. and Yoon, J. (2001) Recent highlights in hemicarcerand chemistry. Acc. Chem. Res. 34, 95–105.

    Article  PubMed  CAS  Google Scholar 

  54. Smith, S. S. (2002) Designs for the self-assembly of open and closed macromolecular structures and a molecular switch using DNA methyltransferase to order proteins on nucleic acid scaffolds. Nanotechnology 13, 413–419.

    Article  CAS  Google Scholar 

  55. Niemeyer, C. M. (2000) Self-assembled nanostructures based on DNA: towards the development of nanobiotechnology. Curr. Opin. Cell Biol. 4, 609–618.

    CAS  Google Scholar 

  56. Fuller, R. A., Clark, J., Kretzner, L., Korns, D., Blair, S. L., Crocitto, L. E., and Smith, S. S. (2003) Use of microfluidics chips for the detection of human telomerase RNA. Anal. Biochem. 313, 331–334.

    Article  PubMed  CAS  Google Scholar 

  57. Nachamkin, I., Panaro, N. J., Li, M., Ung, H., Yuen, P. K., Kricka, L. J., and Wilding, P. (2001) Agilent 2100 bioanalyzer for restriction fragment length polymorphism analysis of the Campylobacter jejuni flagellin gene. J. Clin. Microbiol. 39, 754–757.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Clark, J. et al. (2005). Construction of Ordered Protein Arrays. In: Vo-Dinh, T. (eds) Protein Nanotechnology. Methods in Molecular Biology™, vol 300. Humana Press. https://doi.org/10.1385/1-59259-858-7:325

Download citation

  • DOI: https://doi.org/10.1385/1-59259-858-7:325

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-310-7

  • Online ISBN: 978-1-59259-858-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics