Skip to main content

Plasmonics-Based Nanostructures for Surface-Enhanced Raman Scattering Bioanalysis

  • Protocol
Protein Nanotechnology

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 300))

Summary

Surface-enhanced Raman scattering (SERS) spectroscopy is a plasmonics-based spectroscopic technique that combines modern laser spectroscopy with unique optical properties of metallic nanostructures, resulting in strongly increased Raman signals when molecules are adsorbed on or near nanometer-size structures of special metals such as gold, silver, and transition metals. This chapter provides a synopsis of the development and application of SERS-active metallic nanostructures, especially for the analysis of biologically relevant compounds. Some highlights of this chapter include reports of SERS as an immunoassay readout method, SERS gene nanoprobes, near-field scanning optical microscopy SERS probes, SERS as a tool for single-molecule detection, and SERS nanoprobes for cellular studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fleischmann, M., Hendra, P. J., and McQuillan, A. J. (1974) Raman-spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166.

    CAS  Google Scholar 

  2. Jeanmaire, D. L. and Van Duyne, R. P. (1977) Surface Raman spectro-electrochemistry. 1. Heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode. J. Electroanal. Chem. 84, 1–20.

    CAS  Google Scholar 

  3. Albrecht, M. G. and Creighton, J. A. (1977) Anomalously intense Raman-spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99, 5215–5217.

    CAS  Google Scholar 

  4. Nie, S. M. and Emory, S. R. (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106.

    PubMed  CAS  Google Scholar 

  5. Kneipp, K., Wang, Y., Kneipp, H., Perelman, L. T., Itzkan, I., Dasari, R., and Feld, M. S. (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670.

    CAS  Google Scholar 

  6. Kneipp, K., Kneipp, H., Deinum, G., Itzkan, I., Dasari, R. R., and Feld, M. S. (1998) Single-molecule detection of a cyanine dye in silver colloidal solution using near-infrared surface-enhanced Raman scattering. Appl. Spectrosc. 52, 175–178.

    CAS  Google Scholar 

  7. Kneipp, K., Kneipp, H., Manoharan, R., Hanlon, E. B., Itzkan, I., Dasari, R. R., and Feld, M. S. (1998) Extremely large enhancement factors in surface-enhanced Raman scattering for molecules on colloidal gold clusters. Appl. Spectrosc. 52, 1493–1497.

    CAS  Google Scholar 

  8. Deckert, V., Zeisel, D., Zenobi, R., and Vo-Dinh, T. (1998) Near-field surface enhanced Raman imaging of dye-labeled DNA with 100-nm resolution. Anal. Chem. 70, 2646–2650.

    CAS  PubMed  Google Scholar 

  9. Zeisel, D., Deckert, V., Zenobi, R., and Vo-Dinh, T. (1998) Near-field surface-enhanced Raman spectroscopy of dye molecules adsorbed on silver island films. Chem. Phys. Lett. 283, 381–385.

    CAS  Google Scholar 

  10. Moskovits, M. (1985) Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783–826.

    CAS  Google Scholar 

  11. Wokaun, A. (1984) Surface-enhanced electromagnetic processes. Solid State Phys. Adv. Res. Applic. 38, 223–294.

    CAS  Google Scholar 

  12. Schatz, G. C. (1984) Theoretical-studies of surface enhanced Raman-scattering. Acc. Chem. Res. 17, 370–376.

    CAS  Google Scholar 

  13. Kerker, M. (1984) Electromagnetic model for surface-enhanced Raman-scattering (Sers) on metal colloids. Acc. Chem. Res. 17, 271–277.

    CAS  Google Scholar 

  14. Chang, R. K. and Furtak, T. E. (1982) Surface Enhanced Raman Scattering, Plenum, New York.

    Google Scholar 

  15. Garrell, R. L. (1989) Surface-enhanced Raman-spectroscopy. Anal. Chem. 61, 401A–411A.

    CAS  Google Scholar 

  16. Vo-Dinh, T. (1989) Surface-enhanced Raman spectrometry, in Chemical Analysis of Polycyclic Aromatic Compounds (Vo-Dinh, T., ed.), Wiley, New York, pp. 451–482.

    Google Scholar 

  17. Pemberton, J. E. (1991) in Electrochemical interfaces: modern techniques for in-situ characterization (Abruna, H. D., ed.), VCH Publishers, Inc.: New York, pp. 195–256.

    Google Scholar 

  18. Brandt, E. S. and Cotton, T. M. (1993) Surface-enhanced Raman scattering. In Investigations of Surfaces and Interfaces Part B, Physical Methods of Chemistry Series, 2nd ed., Rossiter, B. W., (Baetzold, R. C., eds.), Wiley, New York, pp. 663–718.

    Google Scholar 

  19. Otto, A., Mrozek, I., Grabhorn, H., and Akemann, W. (1992) Surface-enhanced Raman-scattering. J. Phys. Condensed Matter 4, 1143–1212.

    CAS  Google Scholar 

  20. Vo-Dinh, T. (1995) Surface-enhanced Raman spectroscopy, in Photonic Probes of Surfaces (Halevi, P., ed.), Elsevier, New York, pp. 65–96.

    Google Scholar 

  21. Ruperez, A. and Laserna, J. J. (1996) Surface-enhanced Raman spectroscopy, in Modern Techniques in Raman Spectroscopy (Laserna, J. J., ed.), Wiley, New York, pp. 227–264.

    Google Scholar 

  22. Haller, K. L., Bumm, L. A., Altkorn, R. I., Zeman, E. J., Schatz, G. C., and Vanduyne, R. P. (1989) Spatially resolved surface enhanced 2nd harmonic-generation-theoretical and experimental-evidence for electromagnetic enhancement in the near-infrared on a laser microfabricated Pt surface. J. Chem. Phys. 90, 1237–1252.

    CAS  Google Scholar 

  23. Golab, J. T., Sprague, J. R., Carron, K. T., Schatz, G. C., and Van Duyne, R. P. (1988) A surface enhanced hyper-Raman scattering study of pyridine adsorbed onto silver—experiment and theory. J. Chem. Phys. 88, 7942–7951.

    CAS  Google Scholar 

  24. Vo-Dinh, T., Stokes, D. L., Griffin, G. D., Volkan, M., Kim, U. J., and Simon, M. I. (1999) Surface-enhanced Raman scattering (SERS) method and instrumentation for genomics and biomedical analysis. J. Raman Spectrosc. 30, 785–793.

    CAS  Google Scholar 

  25. Nabiev, I. and Manfait, M. (1993) Industrial applications of the surface-enhanced Raman-spectroscopy. Rev. Inst. Francais Petrole 48, 261–285.

    CAS  Google Scholar 

  26. Nabiev, I., Chourpa, I., and Manfait, M. (1994) Applications of Raman and surface-enhanced Raman-scattering spectroscopy in medicine. J. Raman Spectrosc. 25, 13–23.

    CAS  Google Scholar 

  27. Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R. R., and Feld, M. S. (1999) Surface-enhanced Raman scattering: a new tool for biomedical spectroscopy. Curr. Sci. 77, 915–924.

    CAS  Google Scholar 

  28. Koglin, E. and Sequaris J. M. (1986) Surface enhanced Raman-scattering of biomolecules. Top. Curr. Chem. 134, 1–57.

    CAS  Google Scholar 

  29. Pemberton, J. E. and Buck, R. P. (1981) Detection of low concentrations of a colored adsorbate at silver by surface-enhanced and resonance-enhanced Raman spectrometry. Anal. Chem. 53, 2263–2267.

    CAS  Google Scholar 

  30. Pettinger, B., Wenning, U., and Wetzel, H. (1980) Surface-plasmon enhanced Raman-scattering frequency and angular resonance of Raman scattered-light from pyridine on Au, Ag and Cu electrodes. Surf. Sci. 101, 409–416.

    CAS  Google Scholar 

  31. Loo, B. H. (1983) Surface-enhanced Raman-spectroscopy of platinum. 2. Enhanced light-scattering of chlorine adsorbed on platinum. J. Phys. Chem. 87, 3003–3007.

    CAS  Google Scholar 

  32. Fleischmann, M., Graves, P. R., and Robinson, J. (1985) The Raman-spectroscopy of the ferricyanide ferrocyanide system at gold, beta-palladium hydride and platinum-electrodes. J. Electroanal. Chem. 182, 87–98.

    CAS  Google Scholar 

  33. Carrabba, M. M., Edmonds, R. B., and Rauh, R. D. (1987) Feasibility studies for the detection of organic-surface and subsurface water contaminants by surface-enhanced Raman-spectroscopy on silver electrodes. Anal. Chem. 59, 2559–2563.

    PubMed  CAS  Google Scholar 

  34. Ren, B., Lin, X. F., Yang, Z. L., Liu, G. K., Aroca, R. F., Mao, B. W., and Tian, Z. Q. (2003) Surface-enhanced Raman scattering in the ultraviolet spectral region: UV-SERS on rhodium and ruthenium electrodes. J. Am. Chem. Soc. 125, 9598, 9599.

    PubMed  CAS  Google Scholar 

  35. Yang, Z. L., Wu, D. Y., Yao, J. L., Hu, J. Q., Ren, B., Zhou, H. G., and Tian, Z. Q. (2002) SERS mechanism of nickel electrode. Chin. Sci. Bull. 47, 1983–1986.

    CAS  Google Scholar 

  36. Tian, Z. Q., Ren, B., and Wu, D. Y. (2002) Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures. J. Phys. Chem. B 106, 9463–9483.

    CAS  Google Scholar 

  37. Thierry, D. and Leygraf, C. (1985) The influence of photoalteration on surface-enhanced Raman-scattering from copper electrodes. Surf. Sci. 149, 592–600.

    CAS  Google Scholar 

  38. Creighton, J. A., Blatchford, C. B., and Albrecht, M. C. (1979) Plasma resonance enhancement of Raman-scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J. Chem. Soc. Faraday Trans. 2, 790–798.

    Google Scholar 

  39. Sheng, R. S., Zhu, L., and Morris, M. D. (1986) Sedimentation classification of silver colloids for surface-enhanced Raman-scattering. Anal. Chem. 58, 1116–1119.

    CAS  Google Scholar 

  40. Ni, F., Sheng, R. S., and Cotton, T. M. (1990) Flow-injection analysis and real-time detection of RNA bases by surface-enhanced Raman-spectroscopy. Anal. Chem. 62, 1958–1963.

    PubMed  CAS  Google Scholar 

  41. Lee, P. C. and Meisel, D. (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 86, 3391–3395.

    CAS  Google Scholar 

  42. Munro, C. H., Smith, W. E., Garner, M., Clarkson, J., and White, P. C. (1995) Characterization of the surface of a citrate-reduced colloid optimized for use as a substrate for surface-enhanced resonance Raman-scattering. Langmuir 11, 3712–3720.

    CAS  Google Scholar 

  43. Tarabara, V. V., Nabiev, I. R., and Feofanov, A. V. (1998) Surface-enhanced Raman scattering (SERS) study of mercaptoethanol monolayer assemblies on silver citrate hydrosol: preparation and characterization of modified hydrosol as a SERS-active substrate. Langmuir 14, 1092–1098.

    CAS  Google Scholar 

  44. Li, Y. S., Cheng, J. C., and Coons, L. B. (1999) A silver solution for surface-enhanced Raman scattering. Spectrochim. Acta Part A 55, 1197–1207.

    Google Scholar 

  45. Ahern, A. M. and Garrell, R. L. (1987) In situ photoreduced silver-nitrate as a substrate for surface-enhanced Raman-spectroscopy. Anal. Chem. 59, 2813–2816.

    CAS  Google Scholar 

  46. Prochazka, M., Mojzes, P., Stepanek, J., Vlckova, B., and Turpin, P. Y. (1997) Probing applications of laser ablated Ag colloids in SERS spectroscopy: improvement of ablation procedure and SERS spectral testing. Anal. Chem. 69, 5103–5108.

    CAS  Google Scholar 

  47. Hildebrandt, P. and Stockburger, M. (1984) Surface-enhanced resonance Raman-spectroscopy of rhodamine-6G adsorbed on colloidal silver. J. Phys. Chem. 88, 5935–5944.

    CAS  Google Scholar 

  48. Cao, Y. W., Jin, R., and Mirkin, C. A. (2001) DNA-modified core-shell Ag/Au nanoparticles. J. Am. Chem. Soc. 123, 7961, 7962.

    PubMed  CAS  Google Scholar 

  49. Pham, T., Jackson, J. B., Halas, N. J., and Lee, T. R. (2002) Preparation and characterization of gold nanoshells coated with self-assembled monolayers. Langmuir 18, 4915–4920.

    CAS  Google Scholar 

  50. Graf, C. and van Blaaderen, A. (2002) Metallodielectric colloidal core-shell particles for photonic applications. Langmuir 18, 524–534.

    CAS  Google Scholar 

  51. Jackson, J. B., Westcott, S. L., Hirsch, L. R., West, J. L., and Halas, N. J. (2003) Controlling the surface enhanced Raman effect via the nanoshell geometry. Appl. Phys. Lett. 82, 257–259.

    CAS  Google Scholar 

  52. Van Duyne, R. P., Hulteen, J. C., and Treichel, D. A. (1993) Atomic-force microscopy and surface-enhanced Raman-spectroscopy. 1. Ag island films and Ag film over polymer nanosphere surfaces supported on glass. J. Chem. Phys. 99, 2101–2115.

    Google Scholar 

  53. Semin, D. J. and Rowlen, K. L. (1994) Influence of vapor-deposition parameters on SERS active Ag film morphology and optical-properties. Anal. Chem. 66, 4324–4331.

    CAS  Google Scholar 

  54. Stockle, R. M., Deckert, V., Fokas, C., Zeisel, D., and Zenobi, R. (2000) Sub-wavelength Raman spectroscopy on isolated silver islands. Vibrational Spectrosc. 22, 39–48.

    CAS  Google Scholar 

  55. Roark, S. E. and Rowlen, K. L. (1994) Thin Ag Films—influence of substrate and postdeposition treatment on morphology and optical-properties. Anal. Chem. 66, 261–270.

    CAS  Google Scholar 

  56. Roark, S. E., Semin, D. J., Lo, A., Skodje, R. T., and Rowlen, K. L. (1995) Solvent-induced morphology changes in thin silver films. Anal. Chim. Acta 307, 341–353.

    CAS  Google Scholar 

  57. Mosier-Boss, P. A. and Lieberman, S. H. (1999) Comparison of three methods to improve adherence of thin gold films to glass substrates and their effect on the SERS response. Appl. Spectrosc. 53, 862–873.

    CAS  Google Scholar 

  58. Vo-Dinh, T., Hiromoto, M. Y. K., Begun, G. M., and Moody, R. L. (1984) Surface-enhanced Raman spectrometry for trace organic-analysis. Anal. Chem. 56, 1667–1670.

    CAS  Google Scholar 

  59. Goudonnet, J. P., Begun, G. M., and Arakawa, E. T. (1982) Surface-enhanced Raman-scattering on silver-coated Teflon sphere substrates. Chem. Phys. Lett. 92, 197–201.

    CAS  Google Scholar 

  60. Alak, A. M. and Vo-Dinh, T. (1989) Silver-coated fumed silica as a substrate material for surface-enhanced Raman-scattering. Anal. Chem. 61, 656–660.

    CAS  Google Scholar 

  61. Moody, R. L., Vo-Dinh, T., and Fletcher, W. H. (1987) Investigation of experimental parameters for surface-enhanced Raman-scattering (SERS) using silver-coated microsphere substrates. Appl. Spectrosc. 41, 966–970.

    CAS  Google Scholar 

  62. Alak, A. M. and Vo-Dinh, T. (1988) Surface-enhanced Raman spectrometry of chlorinated pesticides. Anal. Chim. Acta 206, 333–337.

    CAS  Google Scholar 

  63. Bello, J. M., Stokes, D. L., and Vo-Dinh, T. (1989) Silver-coated alumina as a new medium for surface-enhanced Raman-scattering analysis. Appl. Spectrosc. 43, 1325–1330.

    CAS  Google Scholar 

  64. Bello, J. M., Stokes, D. L., and Vo-Dinh, T. (1989) Titanium-dioxide based substrate for optical monitors in surface-enhanced Raman-scattering analysis. Anal. Chem. 61, 1779–1783.

    CAS  Google Scholar 

  65. Alak, A. M. and Vo-Dinh, T. (1987) Surface-enhanced Raman-spectrometry of organophosphorus chemical-agents. Anal. Chem. 59, 2149–2153.

    PubMed  CAS  Google Scholar 

  66. Li, Y. S., Vo-Dinh, T., Stokes, D. L., and Yu, W. (1992) Surface-enhanced Raman analysis of p-nitroaniline on vacuum evaporation and chemically deposited silver-coated alumina substrates. Appl. Spectrosc. 46, 1354–1357.

    CAS  Google Scholar 

  67. Li, Y. S. and Wang, Y. (1992) Chemically prepared silver alumina substrate for surface-enhanced Raman-scattering. Appl. Spectrosc. 46, 142–146.

    CAS  Google Scholar 

  68. Helmenstine, A. M., Li, Y. S., and Vo-Dinh, T. (1993) Surface-enhanced Raman-scattering analysis of etheno adducts of adenine. Vibrational Spectrosc. 4, 359–364.

    CAS  Google Scholar 

  69. Helmenstine, A., Uziel, M., and Vo-Dinh, T. (1993) Measurement of DNA-adducts using surface-enhanced Raman-spectroscopy. J. Toxicol. Environ. Health 40, 195–202.

    PubMed  CAS  Google Scholar 

  70. Vo-Dinh, T. and Stokes, D. L. (1993) Surface-enhanced Raman vapor dosimeter. Appl. Spectrosc. 47, 1728–1732.

    CAS  Google Scholar 

  71. Alarie, J. P., Stokes, D. L., Sutherland, W. S., Edwards, A. C., and Vo-Dinh, T. (1992) Intensified charge coupled device-based fiberoptic monitor for rapid remote surface-enhanced Raman-scattering sensing. Appl. Spectrosc. 46, 1608–1612.

    CAS  Google Scholar 

  72. Narayanan, V. A., Begun, G. M., Bello, J. M., Stokes, D. L., and Vo-Dinh, T. (1993) Analysis of the plant-growth regulator Alar (Daminozide) and its hydrolysis products using Raman-spectroscopy. Analysis 21, 107–112.

    CAS  Google Scholar 

  73. Narayanan, V. A., Begun, G. M., Stump, N. A., Stokes, D. L., and Vo-Dinh, T. (1993) Vibrational-spectra of fluvalinate. J. Raman Spectrosc. 24, 123–128.

    CAS  Google Scholar 

  74. Narayanan, V. A., Stokes, D. L., and Vo-Dinh, T. (1994) Vibrational spectral-analysis of eosin-y and erythrosin-b—intensity studies for quantitative detection of the dyes. J. Raman Spectrosc. 25, 415–422.

    CAS  Google Scholar 

  75. Vo-Dinh, T., Houck, K., and Stokes, D. L. (1994) Surface-enhanced Raman gene probes. Anal. Chem. 66, 3379–3383.

    PubMed  CAS  Google Scholar 

  76. Vo-Dinh, T., Miller, G. H., Bello, J., Johnson, R., Moody, R. L., Alak, A., and Fletcher, W. R. (1989) Surface-active substrates for Raman and luminescence analysis. Talanta 36, 227–234.

    PubMed  CAS  Google Scholar 

  77. Wachter, E. A., Storey, J. M. E., Sharp, S. L., Carron, K. T., and Jiang, Y. (1995) Hybrid substrates for real-time sers-based chemical sensors. Appl. Spectrosc. 49, 193–199.

    CAS  Google Scholar 

  78. Liao, P. F. (1982) in Surface Enhanced Raman Scattering (Chang, R. K. and Furtak, T. E., eds.), Plenum, New York, p. 379–390.

    Google Scholar 

  79. Vo-Dinh, T., Hiromoto, M. Y. K., Begun, G. M., and Moody, R. L. (1984) Surface-enhanced Raman spectrometry for trace organic-analysis. Anal. Chem. 56, 1667–1670.

    CAS  Google Scholar 

  80. Meier, M., Wokaun, A., and Vo-Dinh, T. (1985) Silver particles on stochastic quartz substrates providing tenfold increase in Raman enhancement. J. Phys. Chem. 89, 1843–1846.

    CAS  Google Scholar 

  81. Vo-Dinh, T., Meier, M., and Wokaun, A. (1986) Surface-enhanced Raman-spectrometry with silver particles on stochastic-post substrates. Anal. Chim. Acta 181, 139–148.

    CAS  Google Scholar 

  82. Liao, P. F. and Stern, M. B. (1982) Surface-enhanced Raman-scattering on gold and aluminum particle arrays. Opt. Lett. 7, 483–485.

    PubMed  CAS  Google Scholar 

  83. Enlow, P. D., Buncick, M., Warmack, R. J., and Vo-Dinh, T. (1986) Detection of nitro polynuclear aromatic-compounds by surface-enhanced raman-spectrometry. Anal. Chem. 58, 1119–1123.

    CAS  Google Scholar 

  84. Volkan, M., Stokes, D. L., and Vo-Dinh, T. (1999) A new surface-enhanced Raman scattering substrate based on silver nanoparticles in sol-gel. J. Raman Spectrosc. 30, 1057–1065.

    CAS  Google Scholar 

  85. Volkan, M., Stokes, D. L., and Vo-Dinh, T. (2000) Surface-enhanced Raman of dopamine and neurotransmitters using sol-gel substrates and polymer-coated fiber-optic probes. Appl. Spectrosc. 54, 1842–1848.

    CAS  Google Scholar 

  86. Pal, A., Stokes, D. L., Alarie, J. P., and Vo-Dinh, T. (1995) Selective surface-enhanced Raman-spectroscopy using a polymer-coated substrate. Anal. Chem. 67, 3154–3159.

    CAS  Google Scholar 

  87. Vo-Dinh, T. and Stokes, D. L. (1999) Surface-enhanced Raman detection of chemical vapors with the use of personal dosimeters. Field Anal. Chem. Technol. 3, 346–356.

    CAS  Google Scholar 

  88. Stokes, D. L., Pal, A., Narayanan, V. A., and Vo-Dinh, T. (1999) Evaluation of a chemical vapor dosimeter using polymer-coated SERS substrates. Anal. Chim. Acta 399, 265–274.

    CAS  Google Scholar 

  89. Carron, K. T., Lewis, M. L., Dong, J. A., Ding, J. F., Xue, G., and Chen, Y. (1993) Surface-enhanced Raman-scattering and cyclic voltammetry studies of synergetic effects in the corrosion inhibition of copper by polybenzimidazole and mercaptobenzimidazole at high temperature. J. Mater. Sci. 28, 4099–4103.

    CAS  Google Scholar 

  90. Deschaines, T. O. and Carron, K. T. (1997) Stability and surface uniformity of selected thiol-coated SERS surfaces. Appl. Spectrosc. 51, 1355–1359.

    CAS  Google Scholar 

  91. Crane, L. G., Wang, D. X., Sears, L. M., Heyns, B., and Carron, K. (1995) SERS surfaces modified with a 4-(2-pyridylazo)resorcinol disulfide derivative—detection of copper, lead, and cadmium. Anal. Chem. 67, 360–364.

    CAS  Google Scholar 

  92. Sulk, R., Chan, C., Guicheteau, J., Gomez, C., Heyns, J. B. B., Corcoran, R., and Carron, K. (1999) Surface-enhanced Raman assays (SERA): measurement of bilirubin and salicylate. J. Raman Spectrosc. 30, 853–859.

    CAS  Google Scholar 

  93. Sulk, R. A., Corcoran, R. C., and Carron, K. T. (1999) Surface enhanced Raman scattering detection of amphetamine and methamphetamine by modification with 2-mercaptonicotinic acid. Appl. Spectrosc. 53, 954–959.

    CAS  Google Scholar 

  94. Zou, S. Z. and Weaver, M. J. (1998) Surface-enhanced Raman scattering an uniform transition metal films: toward a versatile adsorbate vibrational strategy for solid-nonvacuum interfaces? Anal. Chem. 70, 2387–2395.

    CAS  PubMed  Google Scholar 

  95. Wilke, T., Gao, X. P., Takoudis, C. G., and Weaver, M. J. (1991) Surface-enhanced Raman-spectroscopy as a probe of adsorption at transition metal-high-pressure gas interfaces—NO, CO, and oxygen on platinum-coated gold, rhodium-coated gold, and ruthenium-coated gold. Langmuir 7, 714–721.

    CAS  Google Scholar 

  96. Tarcha, P. J., DeSaja-Gonzalez, J., Rodriguez-Llorente, S., and Aroca, R. (1999) Surface-enhanced fluorescence on SiO2-coated silver island films. Appl. Spectrosc. 53, 43–48.

    CAS  Google Scholar 

  97. Lacy, W. B., Olson, L. G., and Harris, J. M. (1999) Quantitative SERS measurements on dielectric-overcoated silver-island films by solution deposition control of surface concentrations. Anal. Chem. 71, 2564–2570.

    CAS  PubMed  Google Scholar 

  98. Lacy, W. B., Williams, J. M., Wenzler, L. A., Beebe, T. P., and Harris, J. M. (1996) Characterization of SiO2-overcoated silver-island films as substrates for surface-enhanced Raman scattering. Anal. Chem. 68, 1003–1011.

    CAS  Google Scholar 

  99. Fu, X. Y., Mu, T., Wang, J., Zhu, T., and Liu, Z. F. (1998) pH-dependent assembling of gold nanoparticles on p-aminothiophenol modified gold substrate. Acta Phys.-Chim. Sinica 14, 968–974.

    CAS  Google Scholar 

  100. Zhu, T., Zhang, X., Wang, J., Fu, X. Y., and Liu, Z. F. (1998) Assembling colloidal Au nanoparticles with functionalized self-assembled monolayers. Thin Solid Films 329, 595–598.

    Google Scholar 

  101. He, H. X., Zhang, H., Li, Q. G., Zhu, T., Li, S. F. Y., and Liu, Z. F. (2000) Fabrication of designed architectures of Au nanoparticles on solid substrate with printed self-assembled monolayers as templates. Langmuir 16, 3846–3851.

    CAS  Google Scholar 

  102. Wang, K. and Li, Y. S. (1997) Silver doping of polycarbonate films for surface-enhanced Raman scattering. Vibrational Spectrosc. 14, 183–188.

    CAS  Google Scholar 

  103. Yang, X. M., Tryk, D. A., Ajito, K., Hashimoto, K., and Fujishima, A. (1996) Surface-enhanced Raman scattering imaging of photopatterned self-assembled monolayers. Langmuir 12, 5525–5527.

    CAS  Google Scholar 

  104. Zhu, T., Yu, H. Z., Wang, J., Wang, Y. Q., Cai, S. M., and Liu, Z. F. (1997) Two-dimensional surface enhanced Raman mapping of differently prepared gold substrates with an azobenzene self-assembled monolayer. Chem. Phys. Lett. 265, 334–340.

    CAS  Google Scholar 

  105. Maeda, Y., Yamamoto, H., and Kitano, H. (1995) Self-assembled monolayers as novel biomembrane mimetics. 1. Characterization of cytochrome-c bound to self-assembled monolayers on silver by surface-enhanced resonance Raman-spectroscopy. J. Phys. Chem. 99, 4837–4841.

    CAS  Google Scholar 

  106. Vo-Dinh, T., Allain, L. R., and Stokes, D. L. (2002) Cancer gene detection using surface-enhanced Raman scattering (SERS). J. Raman Spectrosc. 33, 511–516.

    CAS  Google Scholar 

  107. Michota, A., Kudelski, A., and Bukowska, J. (2000) Chemisorption of cysteamine on silver studied by surface-enhanced Raman scattering. Langmuir 16, 10,236–10,242.

    CAS  Google Scholar 

  108. Michota, A., Kudelski, A., and Bukowska, J. (2001) Influence of electrolytes on the structure of cysteamine monolayer on silver studied by surface-enhanced Raman scattering. J. Raman Spectrosc. 32, 345–350.

    CAS  Google Scholar 

  109. Culha, M., Stokes, D., Allain, L. R., and Vo-Dinh, T. (2003) Surface-enhanced Raman scattering substrate based on a self-assembled monolayer for use in gene diagnostics. Anal. Chem. 75, 6196–6201.

    PubMed  CAS  Google Scholar 

  110. Culha, M., Stokes, D, and Vo-Dinh, T (2003) Surface-enhanced Raman scattering for cancer diagnostics: detection of the BCL2 gene. Expert Rev. Mol. Diagn. 3, 669–675.

    PubMed  CAS  Google Scholar 

  111. Vo-Dinh, T., Stokes, D. L., Griffin, G. D., Volkan, M., Kim, U. J., and Simon, M. I. (1999) Surface-enhanced Raman scattering (SERS) method and instrumentation for genomics and biomedical analysis. J. Raman Spectrosc. 30, 785–793.

    CAS  Google Scholar 

  112. Isola, N. R., Stokes, D. L., and Vo-Dinh, T. (1998) Surface enhanced Raman gene probe for HIV detection. Anal. Chem. 70, 1352–1356.

    PubMed  CAS  Google Scholar 

  113. Graham, D., Smith, W. E., Linacre, A. M. T., Munro, C. H., Watson, N. D., and White, P. C. (1997) Selective detection of deoxyribonucleic acid at ultralow concentrations by SERRS. Anal. Chem. 69, 4703–4707.

    CAS  Google Scholar 

  114. Dou, X., Yamaguchi, Y., Yamamoto, H., Doi, S., and Ozaki, Y. (1998) NIR SERS detection of immune reaction on gold colloid particles without bound/free antigen separation. J. Raman Spectrosc. 29, 739–742.

    CAS  Google Scholar 

  115. Ni, J., Lipert, R. J., Dawson, G. B., and Porter, M. D. (1999) Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids. Anal. Chem. 71, 4903–4908.

    PubMed  CAS  Google Scholar 

  116. Rohr, T. E., Cotton, T., Fan, N., and Tarcha, P. J. (1989) Immunoassay employing surface-enhanced Raman-spectroscopy. Anal. Biochem. 182, 388–398.

    PubMed  CAS  Google Scholar 

  117. Grabbe, E. S. and Buck, R. P. (1989) Surface-enhanced Raman-spectroscopic investigation of human immunoglobulin-G adsorbed on a silver electrode. J. Am. Chem. Soc. 111, 8362–8366.

    CAS  Google Scholar 

  118. Hawi, S. R., Rochanakij, S., Adar, F., Campbell, W. B., and Nithipatikom, K. (1998) Detection of membrane-bound enzymes in cells using immunoassay and Raman microspectroscopy. Anal. Biochem. 259, 212–217.

    PubMed  CAS  Google Scholar 

  119. Dou, X., Takama, T., Yamaguchi, Y., Yamamoto, H., and Ozaki, Y. (1997) Enzyme immunoassay utilizing surface-enhanced Raman scattering of the enzyme reaction product. Anal. Chem. 69, 1492–1495.

    CAS  Google Scholar 

  120. Hirsch, L. R., Jackson, J. B., Lee, A., Halas, N. J., and West, J. L. (2003) A whole blood immunoassay using gold nanoshells. Anal. Chem. 75, 2377–2381.

    PubMed  CAS  Google Scholar 

  121. Mulvaney, S. P., Musick, M. D., Keating, C. D., and Natan, M. J. (2003) Glass-coated, analyte-tagged nanoparticles: A new tagging system based on detection with surface-enhanced Raman scattering. Langmuir 19, 4784–4790.

    CAS  Google Scholar 

  122. Doering, W. E. and Ni, S. M. (2003) Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering. Anal. Chem. 75, 6171–6176.

    PubMed  CAS  Google Scholar 

  123. Sequaris, J. M. L. and Koglin, E. (1987) Direct analysis of high-performance thin-layer chromatography spots of nucleic purine derivatives by surface-enhanced raman-scattering spectrometry. Anal. Chem. 59, 525–527.

    PubMed  CAS  Google Scholar 

  124. Koglin, E. and Sequaris, J. M. (1986) Interaction of proflavine with DNA studied by colloid surface enhanced resonance Raman-spectroscopy. J. Mol. Struct. 141, 405–409.

    CAS  Google Scholar 

  125. Koglin, E., Sequaris, J. M., and Valenta, P. (1980) Surface Raman-spectra of nucleic-acid components adsorbed at a silver electrode. J. Mol. Struct. 60, 421–425.

    CAS  Google Scholar 

  126. Koglin, E., Sequaris, J. M., and Valenta, P. (1982) Surface enhanced Raman-spectroscopy of nucleic-acid bases on Ag electrodes. J. Mol. Struct. 79, 185–189.

    CAS  Google Scholar 

  127. Kim, U. J., Shizuya, H., Deaven, L., Chen, X. N., Korenberg, J. R., and Simon, M. I. (1995) Selection of a sublibrary enriched for a chromosome from total human bacterial artificial chromosome library using DNA from flow-sorted chromosomes as hybridization probes. Nucleic Acids Res. 23, 1838–1839.

    PubMed  CAS  Google Scholar 

  128. Kim, U. J., Birren, B. W., Slepak, T., Mancino, V., Boysen, C., Kang, H. L., Simon, M. I., and Shizuya, H. (1996) Construction and characterization of a human bacterial artificial chromosome library. Genomics 34, 213–218.

    PubMed  CAS  Google Scholar 

  129. Kim, U. J., Shizuya, H., Kang, H. L., et al. (1996) A bacterial artificial chromosome-based framework contig map of human chromosome 22q. PNAS 93, 6297–6301.

    PubMed  CAS  Google Scholar 

  130. Boncheva, M., Scheibler, L., Lincoln, P., Vogel, H., and Akerman, B. (1999) Design of oligonucleotide arrays at interfaces. Langmuir 15, 4317–4320.

    CAS  Google Scholar 

  131. Pohl, D. W., Denk, W., and Lanz, M. (1984) Optical stethoscopy—image recording with resolution lambda/20. Appl. Phys. Lett. 44, 651–653.

    Google Scholar 

  132. Betzig, E., Trautman, J. K., Harris, T. D., Weiner, J. S., and Kostelak, R. L. (1991) Breaking the diffraction barrier—optical microscopy on a nanometric scale. Science 251, 1468–1470.

    PubMed  CAS  Google Scholar 

  133. Bian, R. X., Dunn, R. C., and Xie, X. S. (1995) Single molecule emission characteristics in near-field microscopy. Phys. Rev. Lett. 75, 4772–4775.

    PubMed  CAS  Google Scholar 

  134. Gresillon, S., Aigouy, L., Boccara, A. C., et al. (1999) Experimental observation of localized optical excitations in random metal-dielectric films. Phys. Rev. Lett. 82, 4520–4523.

    CAS  Google Scholar 

  135. Emory, S. R. and Nie, S. (1997) Surface-enhanced Raman spectroscopy on single silver nanoparticles. Anal. Chem. 69, 2631–2635.

    CAS  Google Scholar 

  136. Xu, H. X., Bjerneld, E. J., Kall, M., and Borjesson, L. (1999) Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 83, 4357–4360.

    CAS  Google Scholar 

  137. Bjerneld, E. J., Foldes-Papp, Z., Kall, M., and Rigler, R. (2002) Single-molecule surface-enhanced Raman and fluorescence correlation spectroscopy of horse-radish peroxidase. J. Phys. Chem. B 106, 1213–1218.

    CAS  Google Scholar 

  138. Byassee, T. A., Chan, W. C. W., and Nie, S. (2000) Probing single molecules in single living cells. Anal. Chem. 72, 5606–5611.

    PubMed  CAS  Google Scholar 

  139. Kneipp, K., Haka, A. S., Kneipp, H., et al. (2002) Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles. Appl. Spectrosc. 56, 150–154.

    CAS  Google Scholar 

  140. Yan, F., Wabuyele, M. B., Griffin, G. D., and Vo-Dinh, T. (2004) Targeted SERS nanoparticles for intracellular sensing. PittCon 2004, Chicago, IL. March 9–12.

    Google Scholar 

Download references

Acknowledgments

This work was jointly sponsored by the Federal Bureau of Investigation (Project No. 2051-II18-Y1), and the Office of Biological and Environmental Research, U.S. Department of Energy, under contract DE-AC05-00OR22725 with UT-Battelle, LLC; and by the Laboratory Directed Research and Development Program (Advanced Plasmonics Sensors Project) at Oak Ridge National Laboratory. Fei Yan and David L. Stokes are also supported by an appointment to the Oak Ridge National Laboratory Postdoctoral Research Associates Program, administered jointly by the Oak Ridge National Laboratory and Oak Ridge Institute for Science and Education.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Vo-Dinh, T., Yan, F., Stokes, D.L. (2005). Plasmonics-Based Nanostructures for Surface-Enhanced Raman Scattering Bioanalysis. In: Vo-Dinh, T. (eds) Protein Nanotechnology. Methods in Molecular Biology™, vol 300. Humana Press. https://doi.org/10.1385/1-59259-858-7:255

Download citation

  • DOI: https://doi.org/10.1385/1-59259-858-7:255

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-310-7

  • Online ISBN: 978-1-59259-858-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics