Skip to main content

Studying 3D Subdomains of Proteins at the Nanometer Scale Using Fluorescence Spectroscopy

  • Protocol
Protein Nanotechnology

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 300))

Summary

Databases devoted to the crystal structure of proteins have dramatically increased in size during the last two decades. Moreover, X-ray and NMR technology studies have shown that proteins belonging to the same family generally share the same global 3D architecture. These results suggest that the need for experimental determination of protein structure will be reduced to those that are suspected to have sufficiently novel structures. Furthermore, NMR and other techniques have demonstrated that a protein in solution experiences constant random thermal motions that occur over large time scales, ranging from picoseconds to seconds and perhaps hours. Such changes may have important functional consequences, but identifying which changes are functionally relevant remains a difficult task even if this problem has been addressed both with experimental and computational methods. For that specific purpose, there is a need for methods allowing a fast and accurate monitoring of conformation changes (that occur at specific sub-domains of proteins. Fluorescence resonance energy transfer (FRET) is a suitable tool for monitoring conformational changes at the nanoscale level. This chapter describes the various FRET methods that are used for monitoring the 3D sub-domain conformation of proteins in solution, in single living cells and at the single molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Palmer, A. G. (1997) III. Probing molecular motion by NMR. Curr. Opin. Struct. Biol. 7, 732–737.

    Article  PubMed  CAS  Google Scholar 

  2. Nicholson, L. K., Kay, L. E., Baldisseri, D. M., Arango, J., Young, P. E., Bax, A., and Torchia, D. A. (1992) Dynamics of methyl groups in proteins as studied by proton-detected 13C-NMR spectroscopy: application to the leucine residues of staphylococcal nuclease. Biochemistry 31, 5253–5263.

    Article  PubMed  CAS  Google Scholar 

  3. Wand, A. J., Urbauer, J. L., McEvoy, R. P., and Bieber, R. J. (1996) Internal dynamics of human ubiquitin revealed by 13C-relaxation studies of randomly fractionally labeled protein. Biochemistry 35, 6116–6125.

    Article  PubMed  CAS  Google Scholar 

  4. Le Master, D. M. (1999) NMR relaxation order parameter analysis of the dynamics of protein side chains. J. Am. Chem. Soc. 121, 1726–1742.

    Article  Google Scholar 

  5. Wang, C. W., Pawley, N. H., and Nicholson, L. K. (2001) The role of backbone motions in ligand binding to the c-Src SH3 domain. J. Mol. Biol. 313, 873–887.

    Article  PubMed  CAS  Google Scholar 

  6. Lee, A. L. and Wand, A. J. (2001) Microscopic origins of entropy, heat capacity and the glass transition in proteins. Nature 411, 501–504.

    Article  PubMed  CAS  Google Scholar 

  7. Wand, A. J. (2001) Dynamic activation of protein function: a view emerging from NMR spectroscopy. Nat. Struct. Biol. 8, 926–931.

    Article  PubMed  CAS  Google Scholar 

  8. Kay, L. E. (1998) Protein dynamics from NMR. Nat. Struct. Biol. 5, 513–517.

    Article  PubMed  CAS  Google Scholar 

  9. Hoogstraten, C. J., Wank, J. R., and Pardi, A. (2000) Active site dynamics in the lead-dependent ribozyme. Biochemistry 39, 9951–9958.

    Article  PubMed  CAS  Google Scholar 

  10. Eisenmesser, E. Z., Bosco, D. A., Akke, M., and Kern, D. (2002) Enzyme dynamics during catalysis. Science 295, 1520–1523.

    Article  PubMed  CAS  Google Scholar 

  11. Garcia-Mira, M. M., Sadqi, M., Fischer, N., Sanchez-Ruiz, J. M., and Munoz, V. (2002) Experimental identification of downhill protein folding. Science 298, 2191–2194.

    Article  PubMed  CAS  Google Scholar 

  12. Dunham, T. D. and Farrens, D. L. (1999) Conformational changes in rhodopsin. J. Biol. Chem. 274, 1683–1690.

    Article  PubMed  CAS  Google Scholar 

  13. Mayor, U., Johnson, C. M., Dagget, V., and Fersht, A. R. (2000) Protein folding and unfolding in microseconds to nanoseconds by experiment and simulation. Proc. Natl. Acad. Sci. USA 97, 13,518–13,522.

    Article  PubMed  CAS  Google Scholar 

  14. Hubbel, W. L., Cafiso, D. S., and Altenbach, C. (2000) Identifying conformational changes with site-directed spin labeling. Nat. Struct. Biol. 7, 735–739.

    Article  Google Scholar 

  15. Sanchez, R., Pieper, U., Melo, F., Eswar, N., Marti-Renom, M. A., Madhusudhan, M. S., Mirkovic, N., and Sali, A. (2000) Protein structure modeling for structural genomics. Nat. Struct. Biol. 7, 986–990.

    Article  PubMed  CAS  Google Scholar 

  16. Föster, T., (1965) Delocalized excitation and excitation transfer, in Modern Quantum Chemistry, vol. 3 (Sinanoglu, O., ed.), Academic, New York, pp. 93–137.

    Google Scholar 

  17. Stryer, L. (1978) Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819–846.

    Article  PubMed  CAS  Google Scholar 

  18. Lakowicz, J. R. (ed.). (1999) Principles of Fluorescence Spectroscopy, 2nd ed., Plenum, New York.

    Google Scholar 

  19. Jurgens, L., Arndt-Jovin, D., Pecht, I., and Jovin, T. M. (1996) Proximity relationships between the type I receptor for Fc epsilon (Fc epsilon RI) and the mast cell function associated antigen (MAFA) studied by donor photobleaching fluorescence resonance energy transfer microscopy. Eur. J. Immunol. 26, 84–91.

    Article  PubMed  CAS  Google Scholar 

  20. Clegg, R. M. (1996) Fluorescence resonance energy transfer, in Fluorescence Imaging Spectroscopy and Microscopy, vol. 137, Chemical Analysis Series (Wang, X. F. and Herman, B. eds.), Wiley, New York, pp. 179–251.

    Google Scholar 

  21. König, K. (1999) Multiphoton microscopy in life science. J. Microsc. 200, 83–104.

    Article  Google Scholar 

  22. Diaspro, A. and Robello, M. (2000) Two-photon excitation of fluorescence for three-dimensional optical imaging of biological structures. J. Photochem. Photobiol. 55, 1–8.

    Article  CAS  Google Scholar 

  23. Patterson, G. H. and Piston, D. W. (2000) Photobleaching in two-photon excitation microscopy. Biophys. J. 78, 2159–2162.

    Article  PubMed  CAS  Google Scholar 

  24. Teruel, M. N. and Meyer, T. (2002) Parallel single-cell monitoring of receptor-triggered membrane translocation of a calcium-sensing protein module. Science 295, 1910–1912.

    Article  PubMed  CAS  Google Scholar 

  25. Salmon, J.-M., Vigo, J., and Viallet, P. (1988) Resolution of complex fluorescence spectra recorded on single unpigmented living cells using a computerized method. Cytometry 9, 25–32.

    Article  PubMed  CAS  Google Scholar 

  26. Vigo, J., Yassine, M., Viallet, P., and Salmon, J.-M. (1995) Multiwavelength fluorescence imaging: the prerequisite for the intracellular applications. J. Trace Microprobe Techniques 13, 199–207.

    CAS  Google Scholar 

  27. Gordon, G. W., Berry, G., Liang, X. H., Levine, B., and Herman, B. (1998) Quantitative Fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys. J. 74, 2702–2713.

    Article  PubMed  CAS  Google Scholar 

  28. Bastiaens, P. I. H. and Squire, A. (1999) Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol. 9, 48–52.

    Article  PubMed  CAS  Google Scholar 

  29. Emptage, N. J. (2001) Fluorescence imaging in living systems. Curr. Opin. Pharmacol. 1, 521–525.

    Article  PubMed  CAS  Google Scholar 

  30. Wouters, F. S., Verveer, P. J., and Bastiaens P. I. H. (2001) Imaging biochemistry inside cells. Trends Cell Biol. 11, 203–211.

    Article  PubMed  CAS  Google Scholar 

  31. Dong, C. Y., So, P. T., French, T., and Gratton, E. (1995) Fluorescence lifetime imaging by asynchronous pump-probe microscopy. Biophys. J. 69, 2234–2242.

    Article  PubMed  CAS  Google Scholar 

  32. Schneckenburger, H., Gschwend, M. H., Sailer, R., Mock, H. P., and Strauss, W. S. (1998) Time-gated fluorescence microscopy in cellular and molecular biology. Cell Mol. Biol. 44, 795–805.

    PubMed  CAS  Google Scholar 

  33. Schneckenburger, H., Gschwend, M. H., Sailer, R., Strauss, W. S., Lyttek, M., Stock, K., and Zipfl, P. (2000) Time-resolved in situ measurement of mitochondrial malfunction by energy transfer spectroscopy. J. Biomed. Opt. 5, 362–366.

    Article  PubMed  CAS  Google Scholar 

  34. Despa, S., Vecer, J., Steels, P., and Ameloot, M. (2000) Fluorescence lifetime microscopy of the Na+ indicator sodium green in HeLa cells. Anal. Biochem. 281, 159–175.

    Article  PubMed  CAS  Google Scholar 

  35. Jakobs, S., Subramaniam, V., Schönle, A., Jovin, T. M., and Hell, S. W. (2000) EGFP and DsRed expressing cultures of Escherichia coli imaged by confocal, two-photon and fluorescence lifetime microscopy. FEBS Lett. 479, 131–135.

    Article  PubMed  CAS  Google Scholar 

  36. Squire, A., Verveer, P. J., and Bastiaens, P. I. H. (2000) Multiple frequency fluorescence lifetime imaging microscopy. J. Microsc. 197, 136–149.

    Article  PubMed  CAS  Google Scholar 

  37. Tadrous, P. J. (2000) Methods for imaging the structure and function of living tissues and cells: fluorescence lifetime imaging. J. Pathol. 191, 229–234.

    Article  PubMed  CAS  Google Scholar 

  38. Hanley, Q. S., Subramaniam, V., Arndt-Jovin, D. J., and Jovin, T. M. (2001) Fluorescence lifetime imaging: multi-point calibration, minimum resolvable differences, and artifact suppression. Cytometry 43, 248–260.

    Article  PubMed  CAS  Google Scholar 

  39. Bancel, F., Salmon, J.-M., Vigo, J., and Viallet, P. M. (1992) Microspectrofluorometry as a tool for investigations of non calcium interactions of indo-1. Cell Calcium 13, 59–68.

    Article  PubMed  CAS  Google Scholar 

  40. Vo-Dinh, T. (1978) Multicomponents analysis by synchronous luminescence spectroscopy. Anal. Chem. 50, 396–401.

    Article  Google Scholar 

  41. Stevenson, C. L., Johnson, R. W., and Vo-Dinh, T. (1994) Synchronous luminescence: a new detection technique for multiple fluorescent probes used for DNA sequencing. Biotechniques 16, 1104–1110.

    PubMed  CAS  Google Scholar 

  42. Viallet, P. M., Vo-Dinh, T., Bunde, T., Ribou, A.-C., Vigo, J., and Salmon, J.-M. (1999) Fluorescent molecular reporter for the 3-D conformation of protein sub-domains: the Mag-indo 1 system. J. Fluoresc. 9, 153–161.

    CAS  Google Scholar 

  43. Viallet, P. M., Vo-Dinh, T., Ribou, A.-C., Vigo, J., and Salmon, J.-M. (2000) Native fluorescence and Mag-indo-1-protein interaction as tools for probing unfolding and refolding sequences of the bovine serum albumin subdomain in the presence of guanidine hydrochloride. J. Protein Chem. 19, 431–439.

    Article  PubMed  CAS  Google Scholar 

  44. Prasher, D. C., Eckenrode, V. K., Ward, W. W., Predergast, F. G., and Cormier, M. J. (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111, 229–233.

    Article  PubMed  CAS  Google Scholar 

  45. Ludin, B. and Matus, A. (1998) GFP illuminates the cytoskeleton. Trends Cell Biol. 8, 72–77.

    Article  PubMed  CAS  Google Scholar 

  46. Bajno, L. and Grinstein, S. (1999) Fluorescent proteins: powerful tools in phagocyte biology. J. Immun. Methods 232, 67–75.

    Article  CAS  Google Scholar 

  47. Chamberlain, C. and Hahn, K. M. (2000) Watching proteins in the wild: fluorescence methods to study dynamics in living cells. Traffic 1, 755–762.

    Article  PubMed  CAS  Google Scholar 

  48. Latif, R. and Graves, P. (2000) Fluorescent probes: Looking backward and looking forward. Thyroid 10, 407–412.

    Article  PubMed  CAS  Google Scholar 

  49. Sacchetti, A., Ciccocioppo, R., and Alberti, S. (2000) The molecular determinants of the efficiency of green fluorescent protein mutants. Histol. Histopathol. 15, 101–107.

    PubMed  CAS  Google Scholar 

  50. Whitaker, M. (2000) Fluorescent tags of protein function in living cells. BioEssays 22, 180–187.

    Article  PubMed  CAS  Google Scholar 

  51. Miyawaki, A. and Tsien, R. Y. (2000) Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein. Methods Enzymol. 327, 472–500.

    Article  PubMed  CAS  Google Scholar 

  52. Truong, K. and Ikura, M. (2001) The use of FRET imaging microscopy to detect protein-protein interactions and protein conformation changes in vivo. Curr. Opin. Struct. Biol. 11, 573–578.

    Article  PubMed  CAS  Google Scholar 

  53. Xu, X., Gerald, A. L., Huang, B. C., Anderson, D. C., Payan, D. G., and Luo, Y. (1998) Detection of programmed cell death using fluorescence energy transfer. Nucleic Acid Res. 26, 2034, 2035.

    Article  PubMed  CAS  Google Scholar 

  54. Mahajan, N. P., Harrison-Shostak, D. C., Michaux, J., and Henman, B. (1999) Novel mutant green fluorescent protein protease substrates reveal the activation of specific caspases during apoptosis. Chem. Biol. 6, 401–409.

    Article  PubMed  CAS  Google Scholar 

  55. Jones, J., Heim, R., Hare, E., Stack, J., and Pollok, B. A. (2000) Development and application of a GFP-FRET intracellular caspase assay for drug screening. J. Biomol. Screen. 5, 307–318.

    Article  PubMed  CAS  Google Scholar 

  56. Luo, K. Q., Yu, V. C., Pu, Y., and Chang, D. C. (2001) Application of the fluorescence resonance energy transfer method for studying the dynamics of caspase-3 activation during UV-induced apoptosis in living HeLa cells. Biochem. Biophys. Res. Commun. 283, 1054–1060.

    Article  PubMed  CAS  Google Scholar 

  57. Tawa, P., Tam, J., Cassady, R., Nicholson, D. W., and Xanthoudakis, S. (2001) Quantitative analysis of fluorescent caspase substrate cleavage in intact cells and identification of novel inhibitors of apoptosis. Cell Death Differ. 8, 30–37.

    Article  PubMed  CAS  Google Scholar 

  58. Ng, T., Squire, A., Hansara, G., et al. (1999) Imaging protein kinase Cα activation in cells. Science 283, 2085–2089.

    Article  PubMed  CAS  Google Scholar 

  59. Nagay, Y., Miyazaki, M., Aoki, R., Zama, T., Inouye, S., Hirose, K., Iino, M., and Hagiwara, M. (2000) A fluorescent indicator for visualizing cAMP-induced phosphorylation in vivo. Nat. Biotechnol. 18, 313–318.

    Article  Google Scholar 

  60. Zhang, J., Ma, Y., Taylor, S. S., and Tsien, R. Y. (2001) Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering. Proc. Natl. Acad. Sci. USA 98, 14,997–15,002.

    Article  PubMed  CAS  Google Scholar 

  61. Ting, A. Y., Kain, K. H., Klemke, R. L., and Tsien, R. Y. (2001) Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells. Proc. Natl. Acad. Sci. USA 98, 15,002–15,008.

    Google Scholar 

  62. Llopis, J., Westin, S., Ricote, M., et al. (2000) Ligand-dependent interactions of coactivators steroid receptor coactivator-1 and peroxisome proliferator-activated receptor binding protein with nuclear hormone receptors can be imaged in living cells and are required for transcription. Proc. Natl. Acad. Sci. USA 97, 4363–4368.

    Article  PubMed  CAS  Google Scholar 

  63. Kenworthy, A. K., Petranova, N., and Edidin, M. (2000) High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol. Biol. Cell 11, 1645–1655.

    PubMed  CAS  Google Scholar 

  64. Sorkin, A., McLure, M., Huang, F., and Carter, R. (2000) Interaction of EGF receptor and Grb2 in living cells visualized by fluorescence resonance energy transfer (FRET) microscopy. Curr. Biol. 10, 1395–1398.

    Article  PubMed  CAS  Google Scholar 

  65. Janetopoulos, C., Jin, T., and Devreotes, P. (2001) Receptor-mediated activation of heteromeric G-proteins in living cells. Science 291, 2408–2411.

    Article  PubMed  CAS  Google Scholar 

  66. Wilding, M., Török, K., and Whitaker, M. (1995) Activation-dependent and activation-independent localization of calmodulin to the mitotic apparatus during the first cell cycle of the Lytechnius pictus embryo. Zygote 3, 219–224.

    Article  PubMed  CAS  Google Scholar 

  67. Wilding, M., Wright, E. M., Patel, R., Ellis-Davies, G., and Whitaker, M. (1996) Local perinuclear calcium signals associated with mitosis-entry in early sea urchin embryos. J. Cell Biol. 135, 191–199.

    Article  PubMed  CAS  Google Scholar 

  68. Torok, K., Wilding, E. M., Groigno, L., Patel, R., and Whitaker, M. (1998) Imaging the spatial dynamics of calmodulin activation during mitosis. Curr. Biol. 8, 692–699.

    Article  PubMed  CAS  Google Scholar 

  69. Whitaker, M. (2000) Fluorescent tags of protein function in living cells. BioEssays 22, 180–187.

    Article  PubMed  CAS  Google Scholar 

  70. Zimprich, F., Török, K., and Bolsover, S. R. (1995) Nuclear calmodulin responds rapidly to calcium influx at the plasmalemma. Cell Calcium 17, 233–238.

    Article  PubMed  CAS  Google Scholar 

  71. Falke, J. J. (2002) A moving story. Science 295, 1480, 1481.

    Article  PubMed  CAS  Google Scholar 

  72. Baron, S., Poast, J., Rizzo, D., McFarland, E., and Kieff, E. (2000) Electroporation of antibodies, DNA, and other molecules into cells: a highly efficient method. J. Immunol. Methods 242, 115–126.

    Article  PubMed  CAS  Google Scholar 

  73. Zelphati, O., Wang, Y., Kitada, S., Reed, J. C., Felgner, P. L., and Corbeil, J. (2001) Intracellular delivery of proteins with a new lipid-mediated delivery system. J. Biol. Chem. 276, 35,103–35,110.

    Article  PubMed  CAS  Google Scholar 

  74. Boyle, D. L., Carman, P., and Takemoto, L. (2002) Translocation of macromolecules into whole rat lenses in culture. Mol. Vis. 8, 226–234.

    PubMed  CAS  Google Scholar 

  75. Fortugno, P., Wall, N. R., Giodini, A., O’Connor, D. S., Plescia, J., Padgett, K. M., Tognin, S., Marchisio, P. C., and Altieri, D. C. (2002) Survivin exists in immunochemically distinct subcellular pools and is involved in spindle microtubule function. J. Cell Sci. 115, 575–585.

    PubMed  CAS  Google Scholar 

  76. Anantharam, V., Kitazawa, M., Wagner, J., Kaul, S., and Kanthasamy, A. G. (2002) Caspase-3-dependent proteolytic cleavage of protein kinase C is essential for oxydative stress-mediated dopaminergic cell death after exposure to methylcyclopentadienyl manganese tricarbonyl. J. Neurosci. 22, 1738–1751.

    PubMed  CAS  Google Scholar 

  77. Fernando, P., Kelly, J. F., Balazsi, K., Slack, R. S., and Megeney, L. A. (2002) Caspase 3 activity is required for skeletal muscle differentiation. Proc. Natl. Acad. Sci. USA 99, 11,025–11,030.

    Article  PubMed  CAS  Google Scholar 

  78. Weiss, S. (2000) Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy. Nat. Struct. Biol. 7, 724–729.

    Article  PubMed  CAS  Google Scholar 

  79. Ha, T., Ting, A. Y., Liang, J., Caldwell, W. B., Deniz, A. A., Chemla, D. S., Schultz, P. G., and Weiss, S. (1999) Single-molecule fluorescence spectroscopy of enzyme conformational dynamics and cleavage mechanism. Proc. Natl. Acad. Sci. USA 96, 893–898.

    Article  PubMed  CAS  Google Scholar 

  80. Deniz, A. A., Laurence, T. A., Beligere, G. S., Dahan, M., Martin, A. B., Chemla, D. S., Dawson, P. E., Schultz, P. G., and Weiss, S. (2000) Single-molecule protein detection protein folding: diffusion fluorescence energy transfer studies of the denaturation of chymotrypsin inhibitor 2. Proc. Natl. Acad. Sci. USA 97, 5179–5184.

    Article  PubMed  CAS  Google Scholar 

  81. Byassee, T. A., Chan, W. C. W., and Nie, S. (2000) Probing single molecules in single living cells. Anal. Chem. 72, 5606–5611.

    Article  PubMed  CAS  Google Scholar 

  82. Schütz, G. H., Kada, G., Pastuhenko, V. P., and Schindler, H. (2000) Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J. 19, 892–901.

    Article  PubMed  Google Scholar 

  83. Harms, G. S., Cognet, L., Lommerse, P. H. M., Blad, G. A., and Schmidt, T. (2001) Autofluorescent proteins in single-molecule research: applications to live cell imaging microscopy. Biophys J. 80, 2396–2408.

    Article  PubMed  CAS  Google Scholar 

  84. Harms, G. S., Cognet, L., Lommerse, P. H. M., et al. (2001) Single-molecule imaging of L-type Ca2+ channels in live cells. Biophys. J. 80, 2639–2646.

    Article  Google Scholar 

  85. Iino, R., Koyama, I., and Kusumi, A. (2001) Single-molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophys. J. 80, 2667–2677.

    Article  PubMed  CAS  Google Scholar 

  86. Sase, I., Miyata, H., Ishiwata, S., and Kinosita, K. Jr. (1997) Axial rotation of sliding actin filaments revealed by single fluorescence imaging. Proc. Natl. Acad. Sci. USA 94, 5646–5650.

    Article  PubMed  CAS  Google Scholar 

  87. Warshaw, D. M., Hayes, E., Gaffney, D., Lauzon, A. M., Wu, J., Kennedy, G., Tribus, K., Lowey, S., and Berger, C. (1998) Myosin conformational states determined by single fluorophore polarization. Proc. Natl. Acad. Sci. USA 95, 8034–8039.

    Article  PubMed  CAS  Google Scholar 

  88. Adachi, K., Yasuda, R., Noji, H., Itoh, H., Yoshida, M., and Kinosita, K. Jr. (2000) Stepping rotation of F1-ATPase visualized through angle-resolved single-fluorophore imaging. Proc. Natl. Acad. Sci. USA 97, 7243–7247.

    Article  PubMed  CAS  Google Scholar 

  89. Sako, Y. and Uyemura, T. (2002) Total internal reflection fluorescence microscopy for single-molecule imaging in living cells. Cell Struct. Funct. 27, 357–365.

    Article  PubMed  CAS  Google Scholar 

  90. Marchese-Ragona, S. P. and Haydon, P. G. (1997) Near-field scanning optical microscopy and near-field confocal optical spectroscopy: emerging techniques in biology, in Imaging Brain Structure and Function (Lester, E. D., Felder, C. C., and Lewis, E. N., eds.), Annals of the New York Academy of Sciences, New York, pp. 196–207.

    Google Scholar 

  91. Enderle, T., Ha, T., Ogletree, D. F., Chemla, D. S., Magowan, C., and Weiss, S. (1997) Membrane specific mapping and colocalization of malarial and host skeletal proteins in the plasmodium falciparum infected erythrocyte dual-color near field scanning optical microscopy. Proc. Natl. Acad. Sci. USA 94, 520–525.

    Article  PubMed  CAS  Google Scholar 

  92. Kirsch, A. K., Subramaniam, V., Jenei, A., and Jovin, T. M. (1999) Fluorescence resonance energy transfer detected by scanning near-field microscopy. J. Microsc. 194, 448–454.

    Article  PubMed  CAS  Google Scholar 

  93. Korchev, Y. E., Raval, M., Lab, M. J., Gorelik, J., Edwards, C. R., and Rayment-Klenerman, D. (2000) Hybrid scanning ion conductance and scanning near-field optical microscopy for the study of living cells. Biophys. J. 78, 2675–2679.

    Article  PubMed  CAS  Google Scholar 

  94. Doyle, R. T., Szulzcewski, M. J., and Haydon, P. G. (2001) Extraction of near-field fluorescence from composite signals to provide high resolution images of glial cells. Biophys. J. 80, 2477–2482.

    Article  PubMed  CAS  Google Scholar 

  95. Dickson, R. M., Cubitt, A. E., Tsien, R. Y., and Moerner, W. E. (1997) On/off blinking and switching behaviour of single molecules of green fluorescence protein. Nature 388, 355–358.

    Article  PubMed  CAS  Google Scholar 

  96. Petermann, E. J. G., Brasselet, S., and Moerner, W. E. (1999) The fluorescence dynamics of single molecules of green fluorescence protein. J. Phys. Chem. A 103, 10,553–10,560.

    Article  Google Scholar 

  97. Dill, K. E. (1999) Polymer principles and protein folding. Protein Sci. 8, 1166–1180.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Viallet, P.M., Vo-Dinh, T. (2005). Studying 3D Subdomains of Proteins at the Nanometer Scale Using Fluorescence Spectroscopy. In: Vo-Dinh, T. (eds) Protein Nanotechnology. Methods in Molecular Biology™, vol 300. Humana Press. https://doi.org/10.1385/1-59259-858-7:165

Download citation

  • DOI: https://doi.org/10.1385/1-59259-858-7:165

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-310-7

  • Online ISBN: 978-1-59259-858-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics