Near-Field Scanning Optical Microscopy for Bioanalysis at Nanometer Resolution

  • Musundi B. Wabuyele
  • Mustafa Culha
  • Guy D. Griffin
  • Pierre M. Viallet
  • Tuan Vo-Dinh
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 300)

Summary

The nondestructive imaging of biomolecules in nanometer domains in their original location and position as adsorbed or deposited on a surface is of garners considerable experimental interest. Near-field scanning optical microscopy (NSOM) is an emerging technique with its astonishing resolving power of <100-nm domains, and nondestructive nature compared with other scanning probe microscopic techniques is an emerging technique to achieve this goal. At the single-molecule level of resolution, it is possible to use the NSOM as a critical tool for visualization of proteins on surfaces to obtain more fundamental information about their orientation and locality without disturbing their original orientation and position, and level of interaction with the surface. Several areas of science and medicine can benefit from this type of study especially for biomedical and biochip applications. To illustrate possible applications, imaging of green fluorescent proteins and biomolecules associated with multidrug resistance proteins in tumor cells will be demonstrated using NSOM.

Key Words

Near-field scanning optical microscopy protein biomolecules multidrug resistance transport protein P-glycoprotein 

Notes

Acknowledgments

This work was sponsored by the Office of Biological and Environmental Research, US Department of Energy, under contract DE-AC05-00OR22725 with UT-Battelle, LLC; and by the Laboratory Directed Research and Development Program (Advanced Plasmonics Sensor project) at Oak Ridge National Laboratory. M. Wabuyele and M. Culha are also supported by an appointment to the Oak Ridge National Laboratory Postdoctoral Research Associates Program, administered jointly by the Oak Ridge National Laboratory and Oak Ridge Institute for Science and Education.

References

  1. 1.
    Abbe, E. (1873) Beitrage zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. Mikrosc. Anat. Entwicklungsmech. 9, 413–468.Google Scholar
  2. 2.
    Synge, E. H. (1928) A suggested method for extending microscopic resolution into the ultra-microscopic region. Philos. Mag. 6, 356–362.Google Scholar
  3. 3.
    Ash, E. A. and Nicholls, G. (1972) Super-resolution aperture scanning microscope. Nature (Lond.) 237, 510–512.CrossRefGoogle Scholar
  4. 4.
    Mrksich, M. and Whitesides, G. M. (1995) Patterning self-assembled monolayers using microcontact printing: a new technology for biosensors. Trends Biotechnol. 13, 228–235.CrossRefGoogle Scholar
  5. 5.
    Lange, F., Cambi, A., Huijbens, R., de Bakker, B., Rensen, W., Garcia-Parajo, M., van Hulst, N., and Figdor, G. C. (2001) Cell biology beyond the diffraction limit: near-field scanning optical microscopy. J. Cell Sci. 114, 4153–4160.PubMedGoogle Scholar
  6. 6.
    Betzig, E. and Chichester, R. (1993) Single molecules observed by near-field scanning optical microscopy. Science 262, 1422–1424.PubMedCrossRefGoogle Scholar
  7. 7.
    Zenobi, R. and Deckert, V. (2000) Scanning near-field optical microscopy and spectroscopy as a tool for chemical analysis. Angew. Chem. Int. Ed. 39, 1747–1757.Google Scholar
  8. 8.
    Doyle, R. T., Szulzcewski, M. J., and Haydon, P. G. (2001) Extraction of near-field fluorescence from composite signals to provide high resolution images of glial cells. Biophys. J. 80, 2477–2482.PubMedCrossRefGoogle Scholar
  9. 9.
    Moers, M. H., Kalle, W. H., Ruiter, A. G., Wiegant, J. C., Raap, A. K., Greve, J., de Grooth, B. G., and Van Hulst, N. F. (1996) Fluorescence in situ hybridization on human metaphase chromosomes detected by near-field scanning optical microscopy. J. Microsc. 182, 40–45.PubMedGoogle Scholar
  10. 10.
    Garcia-Parajo, M. F., Veerman, J. A., Segers-Nolten, A. G., and Van Hulst, N. F. (1998) Near-field optical and shear-force microscopy of single fluorophores and DNA molecules. Ultramicroscopy 71, 311–319.PubMedCrossRefGoogle Scholar
  11. 11.
    Garcia-Parajo, M. F., Veerman, J. A., Segers-Nolten, G. M. J., de Grooth, B. G., Greve, J., and van Hulst, N. F. (1999) Visualising individual green fluorescent proteins with a near field optical microscope. Cytometry 36, 239–246.PubMedCrossRefGoogle Scholar
  12. 12.
    Kirsch, A. K., Meyer, C. K., and Jovin, T. M. (1997) Shear force imaging of DNA in a near-field scanning optical microscope. J. Microsc. 185, 396–401.CrossRefGoogle Scholar
  13. 13.
    Betzig, E., Chichester, R. J., Lanni, F., and Taylor, D. L. (1993) Near-field fluorescence imaging of skeletal actin. Bioimaging 1, 129–135.CrossRefGoogle Scholar
  14. 14.
    Enderle, T., Ha, T., Ogletree, D. F., Chemla, D. S., Magowan, C., and Weiss, S. (1997) Membrane specific mapping and colocalization of malarial and host skeletal proteins in the Plasmodium falciparum infected erythrocyte by dual-color near-field scanning optical microscopy. Proc. Natl. Acad. Sci. USA 94, 520–525.PubMedCrossRefGoogle Scholar
  15. 15.
    Nagy, P., Jenei, A., Kirsch, A. K., Szollosi, J., Damjanovich, S., and Jovin, T. M. (1999) Activation-dependent clustering of the erbB2 receptor tyrosine kinase detected by scanning near-field optical microscopy. J. Cell. Sci. 112, 1733–1741.PubMedGoogle Scholar
  16. 16.
    Deckert, V., Zeisel, D., Zenobi, R., and Vo-Dinh, T. (1998) Near-field surface enhanced Raman imaging of dye-labeled DNA with 100-nm resolution. Anal. Chem. 70, 2646–2650.CrossRefGoogle Scholar
  17. 17.
    Garcia-Parajo, M. F., Veerman, J. A., van Noort, S. J. T., de Grooth, B. G., Greve, J., and van Hulst, N. F. (1998) Near-field optical microscopy for DNA studies at the single molecular level. Bioimaging 6, 43–53.CrossRefGoogle Scholar
  18. 18.
    Emory, S. R. and Nie, S. (1997) Near-field surface-enhanced Raman spectroscopy on single silver nanoparticles. Anal. Chem. 69, 2631–2635.CrossRefGoogle Scholar
  19. 19.
    Zeisel, D., Deckert, V., Zenobi, R., and Vo-Dinh, T. (1998) Near-field surface-enhanced Raman spectroscopy of dye molecules adsorbed on silver island films. Chem. Phys. Lett. 283, 381–385.CrossRefGoogle Scholar
  20. 20.
    Schmalenberg, K. E., Thompson, D. M., Buettner, H. M., Uhrich, K. E., and Garfias, L. F. (2002) In situ stepwise surface analysis of micropatterned glass substrates in liquids using functional near-field scanning optical microscopy. Langmuir 18, 8593–8600.CrossRefGoogle Scholar
  21. 21.
    Dunn, R. C. (1999) Near-field scanning optical microscopy. Chem. Rev. 99, 2891–2927.PubMedCrossRefGoogle Scholar
  22. 22.
    Merrit, M. V., Mrksich, M., and Whitesides, G. M. (1997) Using self-assembled monolayers to study the interactions of man-made materials with proteins, in Principles of Tissue Engineering (Lanza, R. P., Langer, R., and Chick, W., eds.), R. G. Landes Company, Austin, TX, pp. 211–223.Google Scholar
  23. 23.
    Deckert, V. (2003) Near-field imaging in biological and biomedical applications, in Biomedical Photonics Handbook (Vo-Dinh, T., ed.), CRC Press, Boca Raton, FL, pp. 12–19.Google Scholar
  24. 24.
    Zaman, G. J. R., Flens, M. J., van Leusden, M. R., et al. (1994) The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump. Proc. Natl. Acad. Sci. USA 91, 8822–8826.PubMedCrossRefGoogle Scholar
  25. 25.
    Shapiro, A. B., Fox, K., Lam, P., and Ling, V. (1999) Stimulation of P-glycoprotein-mediated drug transport by prazosin and progesterone: evidence for a third drug-binding site. Eur. J Biochem. 3, 841–850.Google Scholar
  26. 26.
    Krisnamachary, N. and Center, M. S. (1993) The MRP gene associated with a non-P-glycoprotein multidrug resistance encodes a 190-kDa membrane bound glycoprotein. Cancer Res. 53, 3658–3661.Google Scholar
  27. 27.
    Barrand, M. A., Heppell-Parton, A. C., Wright, K. A., Rabbits, P. H., and Twentyman, P. R. (1994) A 190-kilodalton protein overexpressed in non-P-glycoprotein-containing multidrug-resistant cells and its relationship to the MRP gene. J. Natl. Cancer Inst. 86, 110–117.PubMedCrossRefGoogle Scholar
  28. 28.
    Borst, P. (1999) Multidrug resistance: a solvable problem? Ann. Oncol. 10, 162–164.PubMedCrossRefGoogle Scholar
  29. 29.
    Sharom, F. J. (1997) The P-glycoprotein efflux pump: how does it transport drugs? J. Membr. Biol. 160, 161–175.PubMedCrossRefGoogle Scholar
  30. 30.
    Sauna, E. Z., Smith, M. M., Muller, M., Kerr, M. K., and Ambudkar, V. S. (2001) The mechanism of action of multidrug-resistance-linked p-glycoprotein. J. Bioenerg. Biomembr. 33, 481–491.PubMedCrossRefGoogle Scholar
  31. 31.
    Stride, D. B., Cole, C. P. S., and Deeley, G. R. (1999) Localization of substrate specificity domain in the multidrug resistance proteins. J. Biol. Chem. 274, 22,877–22,883.PubMedCrossRefGoogle Scholar
  32. 32.
    Hamilton, K. O., Topp, E., Makagiansar, I., Siahaan, T., Yazdanian, M., and Audus, L. K. (2001) Multidrug resistance-associated protein-1 functional activity in Calu-3 cells. J. Pharmacol. Exp. Ther. 3, 1199–1205.Google Scholar
  33. 33.
    Chen, Y., Pant, A. C., and Simon, M. S. (2001) P-Glycoprotein does not reduce substrate concentration from the extracellular leaflet of the plasma membrane in living cells. Cancer Res. 61, 7763–7769.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Musundi B. Wabuyele
    • 1
  • Mustafa Culha
    • 1
  • Guy D. Griffin
    • 1
  • Pierre M. Viallet
    • 1
    • 2
  • Tuan Vo-Dinh
    • 3
  1. 1.Advanced Biomedical Science and Technology GroupOak Ridge National LaboratoryOak Ridge
  2. 2.Laboratory of Physicochemical Biology of Integrated SystemsUniversity of PerpignanPerpignanFrance
  3. 3.Center for Advanced Biomedical Photonics, Life Sciences DivisionOak Ridge National LaboratoryOak Ridge

Personalised recommendations