Advertisement

Construction of Ordered Protein Arrays

  • Jarrod Clark
  • Taras Shevchuk
  • Piotr M. Swiderski
  • Rajesh Dabur
  • Laura E. Crocitto
  • Yaroslav I. Buryanov
  • Steven S. Smith
Part of the Methods in Molecular Biology™ book series (MIMB, volume 300)

Summary

Artificially ordered protein arrays provide a facile approach to a variety of problems in biology and nanoscience. Current demonstration systems use either nucleic acid tethers or methyltransferase fusions in order to target proteins or peptides of interest to nucleic acid scaffolds. These demonstrations point to the large number of useful devices and assemblies that can be envisioned using this approach, including smart biological probes and drug delivery systems. In principle, these systems are now capable of imitating the earliest forms of prebiotic organisms and can be expected to reach the complexity of a small virus in the near future. Third-generation methyltransferase inhibitors provide an example of a smart chemotherapeutics that can be constructed with this approach. We describe the use of mechanistic enzymology, computer-aided design, and microfluidic chip-based capillary electrophoresis in assessing the final assembly and testing of designs of this type.

Key Words

Bionanotechnology DNA methyltransferase protein ordering protein targeting DNA scaffold inhibitor design inhibitor delivery smart chemotherapeutics macromolecular carcerand microfluidics 

References

  1. 1.
    Yun, C. S., Khitrov, G. A., Vergona, D. E., Reich, N. O., and Strouse, G. F. (2002) Enzymatic manipulation of DNA-nanomaterial constructs. J. Am. Chem. Soc. 124, 7644, 7645.PubMedCrossRefGoogle Scholar
  2. 2.
    Seeman, N. C. (1991) Construction of three-dimensional stick figures from branched DNA. DNA Cell. Biol. 10, 475–486.PubMedCrossRefGoogle Scholar
  3. 3.
    Gil, A., de Pablo, P. J., Colchero, J., Gómez-Herrero, J., and Baró, A. M. (2002) Electrostatic scanning force microscopy images of long molecules: single-walled carbon nanotubes and DNA. Nanotechnology 13, 309–313.CrossRefGoogle Scholar
  4. 4.
    Yurke, B., Turberfield, A. J., Mills, A. P. Jr., Simmel, F. C., and Neumann, J. L. (2000) A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608.PubMedCrossRefGoogle Scholar
  5. 5.
    Gibson, T. J. and Lamond, A. I. (1990) Metabolic complexity in the RNA world and implications for the origin of protein synthesis. J. Mol. Evol. 30, 7–15.PubMedCrossRefGoogle Scholar
  6. 6.
    Woese, C. R. (2002) On the evolution of cells. Proc. Natl. Acad. Sci. USA 99, 8742–8747.PubMedCrossRefGoogle Scholar
  7. 7.
    Niemeyer, C. M., Adler, M., Gao, S., and Chi, L. (2000) Supramolecular nanocircles consisting of streptavidin and DNA. Angew. Chem. Int. Ed. Engl. 39, 3055–3059.PubMedGoogle Scholar
  8. 8.
    Niemeyer, C. M., Sano, T., Smith, C. L., and Cantor, C. R. (1994) Oligonucleotide-directed self-assembly of proteins: semisynthetic DNA—streptavidin hybrid molecules as connectors for the generation of macroscopic arrays and the construction of supramolecular bioconjugates. Nucleic Acids Res. 22, 5530–5539.PubMedCrossRefGoogle Scholar
  9. 9.
    Niemeyer, C. M., Koehler, J., and Wuerdemann, C. (2002) DNA-directed assembly of bienzymic complexes from in vivo biotinylated NAD(P)H:FMN oxidoreductase and luciferase. Chembiochem. 3, 242–245.PubMedCrossRefGoogle Scholar
  10. 10.
    Smith, S. S. (1995) Nucleoprotein-based nanoscale fabrication. Biol. Biomed. Sci. Technol. Div. Office of Naval Research (ONR) 34196-3, 161, 162.Google Scholar
  11. 11.
    Smith, S. S., Niu, L., Baker, D. J., Wendel, J. A., Kane, S. E., and Joy, D. S. (1997) Nucleoprotein-based nanoscale assembly. Proc. Natl. Acad. Sci. USA 94, 2162–2167.PubMedCrossRefGoogle Scholar
  12. 12.
    Klimasauskas, S., Kumar, S., Roberts, R. J., and Cheng, X. (1994) HhaI methyltransferase flips its target base out of the DNA helix. Cell 76, 357–369.PubMedCrossRefGoogle Scholar
  13. 13.
    Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., and Bourne, P. E. (2000) The protein data bank. Nucleic Acids Res. 28, 235–242.PubMedCrossRefGoogle Scholar
  14. 14.
    Ponder, J. W. and Case, D. A. (2003) Force fields for protein simulations. Adv. Protein Chem. 66, 27–85.PubMedCrossRefGoogle Scholar
  15. 15.
    Schroeder, S. G. and Samudzi, C. T. (1997) Structural studies of EcoRII methylase: exploring similarities among methylases. Protein Eng. 10, 1385–1393.PubMedCrossRefGoogle Scholar
  16. 16.
    Smith, S. S. (2001) A self-assembling nanoscale camshaft: implications for nanoscale materials and devices constructed from proteins and nucleic acids. Nano Lett. 1, 51–56.CrossRefGoogle Scholar
  17. 17.
    Topfer, R., Matzeit, V., Gronenborn, B., Schell, J., and Steinbiss, H. H. (1987) A set of plant expression vectors for transcriptional and translational fusions. Nucleic Acids Res. 15, 5890.PubMedCrossRefGoogle Scholar
  18. 18.
    Kosykh, V. G., Solonin, A. S., Buryanov Y. I., and Bayev, A. A. (1981) Overproduction of the EcoRII endonuclease and methylase by Escherichia coli strains carrying recombinant plasmids constructed in vitro. Biochim. Biophys. Acta 655, 102–106.PubMedGoogle Scholar
  19. 19.
    Buryanov, Y. I., Bogdarina, I. G., and Bayev, A. A. (1978) Site specificity and chromatographic properties of E. coli K12 and EcoRII DNA-cytosine methylases. FEBS Lett. 88, 251–254.PubMedCrossRefGoogle Scholar
  20. 20.
    Clark, J., Shevchuk, T., Swiderski, P. M., Dabur, R., Crocitto, L. E., Buryanov, Y. I., and Smith, S. S. (2003) Mobility-shift analysis with microfluidics chips. Biotechniques 35, 548–554.PubMedGoogle Scholar
  21. 21.
    Richards, E. J. and Elgin, S. C. (2002). Epigenetic codes for heterochromatin formation and silencing: rounding up the usual suspects. Cell 108, 489–500.PubMedCrossRefGoogle Scholar
  22. 22.
    Smith, S. S. and Crocitto, L. (1999) DNA methylation in eukaryotic chromosome stability revisited: DNA methyltransferase in the management of DNA conformation space. Mol. Carcinog. 26, 1–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Smith, S. S. (2000) Gilbert’s conjecture: the search for DNA (cytosine-5) demethylases and the emergence of new functions for eukaryotic DNA (cytosine-5) methyltransferases. J. Mol. Biol. 302, 1–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Baylin, S. and Bestor, T. H. (2002) Altered methylation patterns in cancer cell genomes: cause or consequence? Cancer Cell 1, 299–305.PubMedCrossRefGoogle Scholar
  25. 25.
    Smith, S. S. (1994) Biological implications of the mechanism of action of human DNA (cytosine-5)methyltransferase. Prog. Nucleic Acid Res. Mol. Biol. 49, 65–111.PubMedCrossRefGoogle Scholar
  26. 26.
    Smith, S. S., Laayoun, A., Lingeman, R. G., Baker, D. J., and Riley, J. (1994) Hypermethylation of telomere-like foldbacks at codon 12 of the human c-Ha-ras gene and the trinucleotide repeat of the FMR-1 gene of fragile X. J. Mol. Biol. 243, 143–151.PubMedCrossRefGoogle Scholar
  27. 27.
    Chiurazzi, P., Pomponi, M. G., Pietrobono, R., Bakker, C. E., Neri, G., and Oostra, B. A. (1999) Synergistic effect of histone hyperacetylation and DNA demethylation in the reactivation of the FMR1 gene. Hum. Mol. Genet. 8, 2317–2323.PubMedCrossRefGoogle Scholar
  28. 28.
    Cameron, E. E., Bachman, K. E., Myohanen, S., Herman, J. G., and Baylin, S. B. (1999) Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat. Genet. 21, 103–107.PubMedCrossRefGoogle Scholar
  29. 29.
    Goffin, J. and Eisenhauer, E. (2002) DNA methyltransferase inhibitors: state of the art. Ann. Oncol. 13, 1699–1716.PubMedCrossRefGoogle Scholar
  30. 30.
    Brown, R. and Strathdee, G. (2002) Epigenetic cancer therapies: DNA methyltransferase inhibitors. Expert Opin. Investig. Drugs 11, 747–754.PubMedCrossRefGoogle Scholar
  31. 31.
    Christman, J. K. (2002) 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 21, 5483–5495.PubMedCrossRefGoogle Scholar
  32. 32.
    Stewart, D. J., Donehower, R. C., Eisenhauer, E. A., Wainman, N., Shah, A. K., Bonfils, C., MacLeod, A. R., Besterman, J. M., and Reid, G. K. (2003) A phase I pharmacokinetic and pharmacodynamic study of the DNA methyltransferase 1 inhibitor MG98 administered twice weekly. Ann. Oncol. 14, 766–774.PubMedCrossRefGoogle Scholar
  33. 33.
    El-Osta, A. (2003) On the use of DNA methylation inhibitors and the reversal of transcriptional silencing. Blood 101, 1656; author reply 1657, 1658.PubMedCrossRefGoogle Scholar
  34. 34.
    Momparler, R. L., Rivard, G. E., and Gyger, M. (1985) Clinical trial on 5-aza-2′-deoxycytidine in patients with acute leukemia. Pharmacol. Ther. 30, 277–286.PubMedCrossRefGoogle Scholar
  35. 35.
    Creagan, E. T., Schaid, D. J., Hartmann, L. C., and Loprinzi, C. L. (1993) A phase II study of 5,6-dihydro-5-azacytidine hydrochloride in disseminated malignant melanoma. Am. J. Clin. Oncol. 16, 243, 244.PubMedCrossRefGoogle Scholar
  36. 36.
    Thibault, A., Figg, W. D., Bergan, R. C., Lush, R. M., Myers, C. E., Tompkins, A., Reed, E., and Samid, D. (1998) A phase II study of 5-aza-2′deoxycytidine (decitabine) in hormone independent metastatic (D2) prostate cancer. Tumori 84, 87–89.PubMedGoogle Scholar
  37. 37.
    Smith, S. S., Lingeman, R. G., and Kaplan, B. E. (1992) Recognition of foldback DNA by the human DNA (cytosine-5-)-methyltransferase. Biochemistry 31, 850–854.PubMedCrossRefGoogle Scholar
  38. 38.
    Smith, S. S., Kaplan, B. E., Sowers, L. C., and Newman, E. M. (1992) Mechanism of human methyl-directed DNA methyltransferase and the fidelity of cytosine methylation. Proc. Natl. Acad. Sci. USA 89, 4744–4748.PubMedCrossRefGoogle Scholar
  39. 39.
    Knox, J. D., Araujo, F. D., Bigey, P., Slack, A. D., Price, G. B., Zannis-Hadjopoulos, M., and Szyf, M. (2000) Inhibition of DNA methyltransferase inhibits DNA replication. J. Biol. Chem. 275, 17,986–17,990.PubMedCrossRefGoogle Scholar
  40. 40.
    Bigey, P., Knox, J. D., Croteau, S., Bhattacharya, S. K., Theberge, J., and Szyf, M. (1999) Modified oligonucleotides as bona fide antagonists of proteins interacting with DNA: hairpin antagonists of the human DNA methyltransferase. J. Biol. Chem. 274, 4594–4606.PubMedCrossRefGoogle Scholar
  41. 41.
    Smith, S. S. and Kaplan, B. E. (1996) Mechanism-based inhibitors of DNA methyltransferase. US patent 5,503,975.Google Scholar
  42. 42.
    Kho, M. R., Baker, D. J., Laayoun, A., and Smith, S. S. (1998) Stalling of human DNA (cytosine-5) methyltransferase at single-strand conformers from a site of dynamic mutation. J. Mol. Biol. 275, 67–79.PubMedCrossRefGoogle Scholar
  43. 43.
    Clark, J., Shevchuk, T., Kho, M. R., and Smith, S. S. (2003) Methods for the design and analysis of oligodeoxynucleotide-based DNA (cytosine-5)methyltransferase inhibitors. Anal. Biochem. 321, 50–64.PubMedCrossRefGoogle Scholar
  44. 44.
    Wendel, J. A. and Smith, S. S. (1998) Uracil as an alternative to 5-fluorocytosine in addressable protein targeting. Nanotechnology 9, 297–304.CrossRefGoogle Scholar
  45. 45.
    Zhou, L., Cheng, X., Connolly, B. A., Dickman, M. J., Hurd, P. J., and Hornby, D. P. (2002) Zebularine: a novel DNA methylation inhibitor that forms a covalent complex with DNA methyltransferases. J. Mol. Biol. 321, 591–599.PubMedCrossRefGoogle Scholar
  46. 46.
    Smith, S. S., Lingeman, R. G., and Kaplan, B. E. (1992) Recognition of foldback DNA by the human DNA (cytosine-5)-methyltransferase. Biochemistry 31, 850–854.PubMedCrossRefGoogle Scholar
  47. 47.
    Christman, J. K., Sheikhnejad, G., Marasco, C. J., and Sufrin, J. R. (1995) 5-Methyl-2′-deoxycytidine in single-stranded DNA can act in cis to signal de novo DNA methylation. Proc. Natl. Acad. Sci. USA 92, 7347–7351.PubMedCrossRefGoogle Scholar
  48. 48.
    Laayoun, A. and Smith, S. S. (1995) Methylation of slipped duplexes, snapbacks and cruciforms by human DNA(cytosine-5)methyltransferase. Nucleic Acids Res. 23, 1584–1589.PubMedCrossRefGoogle Scholar
  49. 49.
    Szyf, M. (1998) Targeting DNA methyltransferase in cancer. Cancer Metastasis Rev. 17, 219–231.PubMedCrossRefGoogle Scholar
  50. 50.
    Smith, S. S., Hardy, T. A., and Baker, D. J. (1987) Human DNA (cytosine-5)methyltransferase selectively methylates duplex DNA containing mispairs. Nucleic Acids Res. 15, 6899–6916.PubMedCrossRefGoogle Scholar
  51. 51.
    Smith, S. S., Kan, J. L., Baker, D. J., Kaplan, B. E., and Dembek, P. (1991) Recognition of unusual DNA structures by human DNA (cytosine-5)methyltransferase. J. Mol. Biol. 217, 39–51.PubMedCrossRefGoogle Scholar
  52. 52.
    Chaplin, M. F. and Bucke, C. (1990) Enzyme Technology, University Press, Cambridge.Google Scholar
  53. 53.
    Warmuth, R. and Yoon, J. (2001) Recent highlights in hemicarcerand chemistry. Acc. Chem. Res. 34, 95–105.PubMedCrossRefGoogle Scholar
  54. 54.
    Smith, S. S. (2002) Designs for the self-assembly of open and closed macromolecular structures and a molecular switch using DNA methyltransferase to order proteins on nucleic acid scaffolds. Nanotechnology 13, 413–419.CrossRefGoogle Scholar
  55. 55.
    Niemeyer, C. M. (2000) Self-assembled nanostructures based on DNA: towards the development of nanobiotechnology. Curr. Opin. Cell Biol. 4, 609–618.Google Scholar
  56. 56.
    Fuller, R. A., Clark, J., Kretzner, L., Korns, D., Blair, S. L., Crocitto, L. E., and Smith, S. S. (2003) Use of microfluidics chips for the detection of human telomerase RNA. Anal. Biochem. 313, 331–334.PubMedCrossRefGoogle Scholar
  57. 57.
    Nachamkin, I., Panaro, N. J., Li, M., Ung, H., Yuen, P. K., Kricka, L. J., and Wilding, P. (2001) Agilent 2100 bioanalyzer for restriction fragment length polymorphism analysis of the Campylobacter jejuni flagellin gene. J. Clin. Microbiol. 39, 754–757.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Jarrod Clark
    • 1
  • Taras Shevchuk
    • 1
  • Piotr M. Swiderski
    • 1
  • Rajesh Dabur
    • 1
  • Laura E. Crocitto
    • 1
  • Yaroslav I. Buryanov
    • 2
  • Steven S. Smith
    • 1
  1. 1.Kaplan Clinical Research LaboratoryCity of Hope National Medical CenterDuarte
  2. 2.Laboratory of Plant Biotechnology, Branch of Shemyakin and Ovchinnikor Institute of Bioorganic ChemistryRussian Academy of SciencesPushchino, MoscowRussia

Personalised recommendations