Skip to main content

CDC25 Dual-Specificity Protein Phosphatases

Detection and Activity Measurements

  • Protocol
Cell Cycle Control

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 296))

  • 2298 Accesses

Abstract

Most cyclin-dependent kinases are negatively regulated by phosphorylation of two residues, a threonine at residue 14 and a tyrosine at residue 15. These residues are dephosphorylated by the cdc25 family of dual-specificity phosphatases leading to cell cycle progression. These phosphatases are inactivated by cellular checkpoint pathways in response to DNA damage leading to cell cycle arrest. Checkpoint pathways regulate the function of these phosphatases by regulating their stability, localization, association with substrate, and their activity. Hence, determining these properties for the cdc25 family of phosphatases becomes crucial for understanding how checkpoint pathways regulate the function of the cdc25 family members and, hence, cell cycle progression. This chapter describes methods to determine the activity, levels, phosphorylation status, and localization of both endogenous and overexpressed cdc25 proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nurse, P. (1994) Ordering S phase and M phase in the cell cycle. Cell 79, 547–550.

    Article  PubMed  CAS  Google Scholar 

  2. Nurse, P. (1998) Checkpoint pathways come of age. Cell 91, 865–867.

    Article  Google Scholar 

  3. Sadhu, K., Reed, S.I., Richardson, H., and Russell, P. (1990) Human homolog of fission yeast cdc25 mitotic inducer is predominantly expressed in G2. Proc. Natl. Acad. Sci. USA 87,5139–5143.

    Article  PubMed  CAS  Google Scholar 

  4. Strausfeld, U., Labbe, J. C., Fesquet, D., et al. (1991) Dephosphorylation and activation of a p34cdc2/cyclin B complex in vitro by human cdc25 protein. Nature 351, 242–245.

    Article  PubMed  CAS  Google Scholar 

  5. Galaktionov, K. and Beach, D. (1991) Specific activation of cdc25 tyrosine phosphatases by B-type cyclins: evidence for multiple roles of mitotic cyclins. Cell 67, 1181–1194.

    Article  PubMed  CAS  Google Scholar 

  6. Mailand, N., Falck, J., Lukas, C., Syljuasen, R. G., Welcker, M., Bartek, J., and Lukas, J. (2000) Rapid destruction of human cdc25A in response to DNA damage. Science 288, 1425–1429.

    Article  PubMed  CAS  Google Scholar 

  7. Jinno, S., Suto, K., Nagata, A., Igarashi, M., Kanaoka, Y., Nojima, H., and Okayama, H. (1994) Cdc25A is a novel phosphatase functioning early in the cell cycle. EMBO J. 7, 1549–1556.

    Google Scholar 

  8. Blomberg, I. and Hoffmann, I. (1999) Ectopic expression of cdc25A accelerates the G1/ S transition and leads to premature activation of cyclinE-and cyclinA-dependent kinases. Mol. Cell. Biol. 1999, 6183–6194.

    Google Scholar 

  9. Honda, R., Ohba, Y., Nagata, A., Okayama, H., and Yasuda, H. (1993) Dephosphorylation of human p34cdc2 kinase on both Thr-14 and Tyr-15 by human cdc25B phosphatase. FEBSLett. 318, 331–334.

    Article  CAS  Google Scholar 

  10. Mailand, N., Podtelejnikov, A. V., Groth, A., Mann, M., Bartek, J., and Lukas, J. (2002) Regulation of G2/M events by cdc25 A through phosphorylation-dependent modulation of its stability. EMBO J. 21, 5911–5920.

    Article  PubMed  CAS  Google Scholar 

  11. Gabrielli, B. G., DeSouza, C. P. C., Tonks, I. D., Clark, J. M., Hayward, N. K., and Ellem, K. A. O. (1996)Cytoplasmic accumulation of cdc25B phosphatase in mitosis triggers centrosomal microtubule nucleation in HeLa cells. J. Cell Sci. 109, 1081–1093.

    CAS  Google Scholar 

  12. Gabrielli, B. G., Clark, J. M., McCormack, A. K., and Ellem, K. A. O. (1997) Ultraviolet light-induced G2 phase cell cycle checkpoint blocks cdc25-dependent progression into mitosis. Oncogene 15, 749–758.

    Article  PubMed  CAS  Google Scholar 

  13. Karlsson, C., Katich, S., Hagting, A., Hoffmann, I., and Pines, J. (1999) Cdc25B and cdc25C differ markedly in their properties as initiators of mitosis. J. Cell Biol. 146, 573–583.

    Article  PubMed  CAS  Google Scholar 

  14. Dalal, S. N., Schweitzer, C. M., Gan, J., and DeCaprio, J. A. (1999) Cytoplasmic localization of human cdc25C during interphase requires an intact 14-3-3 binding site. Mol. Cell. Biol. 19, 4465–4479.

    PubMed  CAS  Google Scholar 

  15. Peng, C.-Y., Graves, P. R., Thoma, R. S., Wu, Z., Shaw, A. S., and Piwnica-Worms, H. (1997) Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of cdc25C on serine-216. Science 277, 1501–1505.

    Article  PubMed  CAS  Google Scholar 

  16. Hoffmann, I., Clarke, P. R., Marcote, M. J., Karsenti, E., and Draetta, G. (1993) Phosphorylation and activation of human cdc25C by cdc2-cyclin B and its involvement in the self amplification of MPF at mitosis. EMBO J. 12, 53–63.

    PubMed  CAS  Google Scholar 

  17. Izumi, T. and Maller, J. L. (1993) Elimination of cdc2 phosphorylation sites in the cdc25 phosphatase blocks initiation of M-phase. Mol. Biol. Cell 4, 1337–1350.

    PubMed  CAS  Google Scholar 

  18. Izumi, T. and Maller, J. L. (1995) Phosphorylation and acitvation of the Xenopus cdc25 phosphatase in the absence of cdc2 and cdk2 kinase activity. Mol. Biol. Cell 6, 215–226.

    PubMed  CAS  Google Scholar 

  19. Strausfeld, U., Fernandez, A., Capony, J.-P., et al. (1994) Activation of p34cdc2 protein kinase by microinjection of human cdc25C into mammalian cells. Requirement for prior phosphorylation of cdc25C by p34cdc2 on sites phosphorylated at mitosis. J. Biol. Chem. 269, 5989–6000.

    PubMed  CAS  Google Scholar 

  20. Toyoshima-Morimoto, F., Taniguchi, E., and Nishida, E. (2002) Plk1 promotes nuclear translocation of human Cdc25C during prophase. EMBO Rep. 3, 341–348

    Article  PubMed  CAS  Google Scholar 

  21. Zhou, B.-B. S. and Elledge, S. J. (2000) The DNA damage response: putting checkpoints in perspective. Nature 408, 433–439.

    Article  PubMed  CAS  Google Scholar 

  22. Falck, J., Mailand, N., Syljuasen, R.G., Bartek, J., and Lukas, J. (2001) The ATM-chk2cdc25A checkpoint pathway guards against radio-resistant DNA synthesis. Nature 410, 842–847.

    Article  PubMed  CAS  Google Scholar 

  23. Matsuoka, S., Huang, M., and Elledge, S. J. (1998) Linkage of ATM to cell cycle regulation by the chk2 protein kinase. Science 282, 1893–1897.

    Article  PubMed  CAS  Google Scholar 

  24. Chen, F., Zhang, Z., Bower, J., et al. (2002) Arsenite-induced cdc25C degradation is through the KEN-box and ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci. USA 99, 1990–1995.

    Article  PubMed  CAS  Google Scholar 

  25. Bulavin, D. V., Higashimoto, Y., Popoff, I. J., et al. (2001) Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase. Nature 411, 102–107.

    Article  PubMed  CAS  Google Scholar 

  26. Muslin, A. J., Tanner, J. W., Allen, P. M., and Shaw, A. S. (1996) Interaction of 14-3-3 with signaling proteins is mediated by recognition of phosphoserine. Cell 84, 889–897.

    Article  PubMed  CAS  Google Scholar 

  27. Yaffe, M. B., Rittinger, K., Volinia, S., et al. (1998) The structural basis for 14-3-3 phosphopeptide binding specificity. Cell 91, 961–971.

    Article  Google Scholar 

  28. Hagting, A., Karlsson, C., Clute, P., Jackman, M., and Pines, J. MPF localization is controlled by nuclear export. EMBO J. 17, 4127–4138 (1998).

    Article  PubMed  CAS  Google Scholar 

  29. Toyoshima, F., Moriguchi, T., Wada, A., Fukuda, M., and Nishida, E. (1998) Nuclear export of cyclin B1 and its possible role in the DNA damage-induced G2 checkpoint. EMBOJ. 17, 2728–2735.

    Article  CAS  Google Scholar 

  30. Morris, M. C., Heitz, A., Mery, J., Heitz, F., and Divita, G. (2000) An essential phosphorylation site domain of cdc25C interacts with both 14-3-3 and cyclins. J. Biol. Chem. 275, 28849–28857.

    Article  PubMed  CAS  Google Scholar 

  31. Mils, V., Baldin, V., Goubin, F., et al. (2000) Specific interaction between 14-3-3 isoforms and the human CDC25B phosphatase. Oncogene 19, 1257–1265.

    Article  PubMed  CAS  Google Scholar 

  32. Conklin, D.S., Galaktionov, K., and Beach, D. (1995) 14-3-3 proteins associate with cdc25 phosphatases. Proc. Natl. Acad. Sci. USA 92, 7892–7896.

    Article  PubMed  CAS  Google Scholar 

  33. Davezac, N., Baldin, V., Gabrielli, B., Forrest, A., Theis-Febvre, N., Yashida, M. and Ducommun, B. (2000) Regulation of cdc25B phosphatases subcellular localization. Oncogene 19, 2179–2185.

    Article  PubMed  CAS  Google Scholar 

  34. Forrest, A. and Gabrielli, B. (2001) Cdc25B activity is regulated by 14-3-3. Oncogene 20, 4393–4401.

    Article  PubMed  CAS  Google Scholar 

  35. Chen, M.-S., Ryan, C. E., and Piwnica-Worms, H. (2003) Chk1 kinase negatively regulates mitotic function of cdc25A phosphatase through 14-3-3 binding. Mol. Cell. Biol. 23, 7488–7497.

    Article  PubMed  CAS  Google Scholar 

  36. Asubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K. (eds.) (1987) Current Protocols in Molecular Biology, John Wiley & Sons, New York.

    Google Scholar 

  37. Krek, W. and DeCaprio, J. A. (1995) Cell synchronization. Meth. Enzymol. 254,114–124.

    Article  PubMed  CAS  Google Scholar 

  38. Schreiber, E., Matthias, P., Muller, M. M., and Schaffner, W. (1989) Rapid detection of octamer binding proteins with’ mini-extracts’, prepared from a small number of cells. Nucleic Acids Res. 17, 6419.

    Article  PubMed  CAS  Google Scholar 

  39. Hendzel, M. J., Wei, Y., Mancini, M. A., et al. (1997) Mitosis-specific phosphorylation of histone H3 initiates prmarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106, 348–360.

    Article  PubMed  CAS  Google Scholar 

  40. Huang, Z., Olson, N. A., You, W., and Houglang, R. P. (1992) A sensitive and competitive ELISA for 2,4-dinitrophenol using 3, 6-fluorscein diphosphate as a fluorogenic substrate. J. Immunol. Methods 149, 261–266.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Dalal, S.N., Volkening, M. (2005). CDC25 Dual-Specificity Protein Phosphatases. In: Humphrey, T., Brooks, G. (eds) Cell Cycle Control. Methods in Molecular Biology™, vol 296. Humana Press. https://doi.org/10.1385/1-59259-857-9:329

Download citation

  • DOI: https://doi.org/10.1385/1-59259-857-9:329

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-144-8

  • Online ISBN: 978-1-59259-857-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics