Skip to main content

CDK-Activating Kinases

Detection and Activity Measurements

  • Protocol
Cell Cycle Control

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 296))

  • 2348 Accesses

Abstract

All cyclin-dependent kinases (CDKs) involved in eukaryotic cell cycle control require phosphorylation at a conserved threonine (or serine) residue within the activation- or T-loop to attain full enzymatic activity. The enzyme responsible for this activating phosphorylation, the CDK-activating kinase (CAK), is therefore essential for proliferation of all eukaryotic cells. We describe methods to assess the T-loop phosphorylation state of the major mammalian CDKs in vivo; to measure the levels of CAK activity in cell-free extracts; and to analyze the abundance, subunit composition, and phosphorylation state of CAK complexes in metazoan cells. When derangement of normal CDK regulation is suspected as a cause of disturbed cell cycle progression, the combination of these methodologies can ascertain whether a primary CAK defect is the explanation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morgan, D. O. (1995) Principles of CDK regulation. Nature 374, 131–134.

    Article  PubMed  CAS  Google Scholar 

  2. Gould, K. L., Moreno, S., Owen, D. J., Sazer, S., and Nurse, P. (1991) Phosphorylation at Thr167 is required for Schizosaccharomyces pombe p34cdc2 function. EMBO J. 10, 3297–3309.

    PubMed  CAS  Google Scholar 

  3. Kaldis, P., Sutton, A., and Solomon, M. J. (1996) The Cdk-activating kinase (CAK) from budding yeast. Cell 86, 553–564.

    Article  PubMed  CAS  Google Scholar 

  4. Thuret, J.-Y., Valay, J.-G., Faye, G., and Mann, C. (1996) Civ1 (CAK in vivo), a novel Cdk-activating kinase. Cell 86, 565–576.

    Article  PubMed  CAS  Google Scholar 

  5. Espinoza, F. H., Farrell, A., Erdjument-Bromage, H., Tempst, P., and Morgan, D. O. (1996) A cyclin-dependent kinase-activating kinase (CAK) in budding yeast unrelated to vertebrate CAK. Science 273, 1714–1717.

    Article  PubMed  CAS  Google Scholar 

  6. Larochelle, S., Pandur, J., Fisher, R. P., Salz, H. K., and Suter, B. (1998) Cdk7 is essential for mitosis and for in vivo Cdk-activating kinase activity. Genes Dev. 12, 370–381.

    Article  PubMed  CAS  Google Scholar 

  7. Lee, K. M., Saiz, J. E., Barton, W. A., and Fisher, R. P. (1999) Cdc2 activation in fission yeast depends on Mcs6 and Csk1, two partially redundant Cdk-activating kinases (CAKs). Curr. Biol. 9, 441–444.

    Article  PubMed  CAS  Google Scholar 

  8. Wallenfang, M. R. and Seydoux, G. (2002) cdk-7 is required for mRNA transcription and cell cycle progression in Caenorhabditis elegans embryos. Proc. Natl. Acad. Sci. USA 99, 5527–5532.

    Article  PubMed  CAS  Google Scholar 

  9. Murray, A. W. and Marks, D. (2001). Can sequencing shed light on cell cycling? Nature 409, 844–846.

    Article  PubMed  CAS  Google Scholar 

  10. Saiz, J. E. and Fisher, R. P. (2002) A CDK-activating kinase network is required in cell cycle control and transcription in fission yeast. Curr. Biol. 12, 1100–1105.

    Article  PubMed  CAS  Google Scholar 

  11. Chen, J., Larochelle, S., Li, X., and Suter, B. (2003) Xpd/Ercc2 regulates CAK activity and mitotic progression. Nature 424, 228–232.

    Article  PubMed  CAS  Google Scholar 

  12. Kaldis, P., Russo, A.A., Chou, H.S., Pavletich, N.P., and Solomon, M.J. (1998). Human and yeast cdk-activating kinases (CAKs) display distinct substrate specificities. Mol. Biol. Cell 9, 2545–2560.

    PubMed  CAS  Google Scholar 

  13. Desai, D., Wessling, H.C., Fisher, R.P., and Morgan, D.O. (1995). The effect ofphosphorylation by CAK on cyclin binding by CDC2 and CDK2. Mol. Cell. Biol. 15, 345–350.

    PubMed  CAS  Google Scholar 

  14. Kumagai, A. and Dunphy, W.G. (1995) Control of the Cdc2/Cyclin B complex inXenopus egg extracts arrested at a G2/M checkpoint with DNA synthesis inhibitors. Mol. Biol. Cell 6, 199–213.

    PubMed  CAS  Google Scholar 

  15. Makowski, G. S. and Ramsby, M. L. (1993) pH modification to enhance the molecular sieving properties of sodium dodecyl sulfate-10% polyacrylamide gels. Anal. Biochem. 212, 283–285.

    Article  PubMed  CAS  Google Scholar 

  16. Garrett, S., Barton, W. A., Knights, R., Jin, P., Morgan, D. O., and Fisher, R. P. (2001) Reciprocal activation by cyclin-dependent kinases 2 and 7 is directed by substrate specificity determinants outside the T-loop. Mol. Cell. Biol. 21, 88–99.

    Article  PubMed  CAS  Google Scholar 

  17. Larochelle, S., Chen, J., Knights, R., et al. (2001) T-loop phosphorylation stabilizes the CDK7-cyclin H-MAT1 complex in vivo and regulates its CTD kinase activity. EMBO J. 20, 3749–3759.

    Article  PubMed  CAS  Google Scholar 

  18. Ross, K. E., Kaldis, P., and Solomon, M. J. (2000) Activating phosphorylation of the Saccharomyces cerevisiae cyclin-dependent kinase, Cdc28p, precedes cyclin binding. Mol. Biol. Cell 11, 1597–1609.

    PubMed  CAS  Google Scholar 

  19. Fisher, R. P., Jin, P., Chamberlin, H. M., and Morgan, D. O. (1995) Alternative mechanisms of CAK assembly require an assembly factor or an activating kinase. Cell 83, 47–57.

    Article  PubMed  CAS  Google Scholar 

  20. Devault, A., Martinez, A.-M., Fesquet, D., et al. (1995) MAT1 (’ménage à trois’), a new RING finger protein subunit stabilizing cyclin H-cdk7 complexes in starfish and Xenopus CAK. EMBO J. 14, 5027–5036.

    PubMed  CAS  Google Scholar 

  21. Tassan, J.-P., Jaquenod, M., Fry, A. M., Frutiger, S., Hughes, G., and Nigg, E. A. (1995) In vitro assembly of a functional human cdk7/cyclin H complex requires MAT1, a novel 36 kD RING finger protein. EMBO J. 14, 5608–5617.

    PubMed  CAS  Google Scholar 

  22. Desai, D., Gu, Y., and Morgan, D. O. (1992) Activation of human cyclin-dependent kinases in vitro. Mol. Biol. Cell 3, 571–582.

    PubMed  CAS  Google Scholar 

  23. Rosenblatt, J., De Bondt, H., Jancarik, J., Morgan, D. O., and Kim, S.-H. (1993) Purification and crystallization of human cyclin-dependent kinase 2. J. Mol. Biol. 230, 1317–1319.

    Article  PubMed  CAS  Google Scholar 

  24. Fesquet, D., Labbé, J.-C., Derancourt, J., et al. (1993) The MO15 gene encodes the catalytic subunit of a protein kinase that activates cdc2 and other cyclin-dependent kinases (CDKs) through phosphorylation of Thr1 61 and its homologues. EMBO J. 12, 3111–3121.

    PubMed  CAS  Google Scholar 

  25. Poon, R. Y. C., Yamashita, K., Adamczewski, J. P., Hunt, T., and Shuttleworth, J. (1993) The cdc2-related protein p40MO15 is the catalytic subunit of a protein kinase that can activate p33cdk2 and p34cdc2. EMBO J. 12, 3123–3132.

    PubMed  CAS  Google Scholar 

  26. Solomon, M. J., Harper, J. W., and Shuttleworth, J. (1993) CAK, the p34cdc2 activating kinase, contains a protein identical or closely related to p40MO15. EMBO J. 12, 3133–3142.

    PubMed  CAS  Google Scholar 

  27. Nagahara, H., Ezhevsky, S.A., Vocero-Akbani, A.M., Kaldis, P., Solomon, M. J., and Dowdy, S. F. (1999) Transforming growth factor beta targeted inactivation of cyclin E:cyclin-dependent kinase 2 (Cdk2) complexes by inhibition of Cdk2 activating kinase activity. Proc. Natl. Acad. Sci. USA 96, 14961–14966.

    Article  PubMed  CAS  Google Scholar 

  28. Kaldis, P. and Solomon, M.J. (2000) Analysis of CAK activities from human cells. Eur. J. Biochem. 267, 4213–4221.

    Article  PubMed  CAS  Google Scholar 

  29. Ukomadu, C. and Dutta, A. (2003) Inhibition of cdk2 activating phosphorylation by mevastatin. J. Biol. Chem. 278, 4840–4846.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Larochelle, S., Fisher, R.P. (2005). CDK-Activating Kinases. In: Humphrey, T., Brooks, G. (eds) Cell Cycle Control. Methods in Molecular Biology™, vol 296. Humana Press. https://doi.org/10.1385/1-59259-857-9:279

Download citation

  • DOI: https://doi.org/10.1385/1-59259-857-9:279

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-144-8

  • Online ISBN: 978-1-59259-857-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics