Skip to main content

The Mammalian Cell Cycle

An Overview

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 296))

Abstract

In recent years, we have witnessed major advances in our understanding of the mammalian cell cycle and how it is regulated. Normal mammalian cellular proliferation is tightly regulated at each phase of the cell cycle by the activation and deactivation of a series of proteins that constitute the cell cycle machinery. This review article describes the various phases of the mammalian cell cycle and focuses on the cell cycle regulatory molecules that act at each stage to ensure normal cellular progression.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. (2002) Molecular Biology of the Cell, 4th ed. Garland Science, New York, NY, pp. 983–1026.

    Google Scholar 

  2. Bicknell, K. A., Surry, E. L., and Brooks, G. (2003) Targeting the cell cycle machinery for the treatment of cardiovascular disease. J. Pharm. Pharmacol. 55, 571–591.

    PubMed  CAS  Google Scholar 

  3. Nurse, P. (2000) A long twentieth century of the cell cycle and beyond. Cell 100, 71–78.

    PubMed  CAS  Google Scholar 

  4. Dulic, V., Lees, E., and Reed, S. I. (1992) Association of human cyclin E with a periodic G1-S phase protein kinase. Science 257, 1958–1961.

    PubMed  CAS  Google Scholar 

  5. Koff, A., Giordano, A., Desai, D., et al. (1992) Formation and activation of a cyclin E-cdk2 complex during the G1 phase of the human cell cycle. Science 257, 1689–1694.

    PubMed  CAS  Google Scholar 

  6. Brooks, G. and La Thangue, N. B. (1999) The cell cycle and drug discovery: the promise and the hope. Drug Discov. Today 4, 455–464.

    PubMed  CAS  Google Scholar 

  7. Martinez, A. M., Afshar, M., Martin, F., Cavadore, J. C., Labbe, J. C., and Doree, M. (1997) Dual phosphorylation of the T-loop in cdk7: its role in controlling cyclin H binding and CAK activity. EMBO J. 16, 343–354.

    PubMed  CAS  Google Scholar 

  8. Drapkin, R., Le Roy, G., Cho, H., Akoulitchev, S., and Reinberg, D. (1996) Human cyclin-dependent kinase-activating kinase exists in three distinct complexes. Proc. Natl. Acad. Sci. USA 93, 6488–6493.

    PubMed  CAS  Google Scholar 

  9. Simone, C. and Giordano, A. (2001) New insight in cdk9 function: from Tat to MyoD. Front. Biosci. 6, D 1073–D 1082.

    CAS  Google Scholar 

  10. Napolitano, G., Majello, B., and Lania, L. (2002) Role of cyclinT/Cdk9 complex in basal and regulated transcription (review). Int. J. Oncol. 21, 171–177.

    PubMed  CAS  Google Scholar 

  11. Leclerc, V. and Leopold, P. (1996) The cyclin C/Cdk8 kinase. Prog. Cell Cycle Res. 2, 197–204.

    PubMed  CAS  Google Scholar 

  12. de Falco, G. and Giordano, A. (1998) CDK9 (PITALRE): a multifunctional cdc2-related kinase. J. Cell Physiol. 177, 501–506.

    PubMed  Google Scholar 

  13. Russo, A. A., Jeffrey, P. D., and Pavletich, N. P. (1996) Structural basis of cyclindependent kinase activation by phosphorylation. Nat. Struct. Biol. 3, 696–700.

    PubMed  CAS  Google Scholar 

  14. Miller, M. E. and Cross, F. R. (2001) Cyclin specificity: how many wheels do you need on a unicycle? J. Cell Sci. 114, 1811–1120.

    PubMed  CAS  Google Scholar 

  15. Peeper, D. S., Parker, L. L., Ewen, M. E., et al. (1993) A-and B-type cyclins differentially modulate substrate specificity of cyclin-cdk complexes. EMBO J. 12, 1947–1954.

    PubMed  CAS  Google Scholar 

  16. Dynlacht, B. D., Moberg, K., Lees, J. A., Harlow, E., and Zhu, L. (1997) Specific regulation of E2F family members by cyclin-dependent kinases. Mol. Cell. Biol. 17, 3867–3875.

    PubMed  CAS  Google Scholar 

  17. Devault, A., Fesquet, D., Cavadore, J. C., et al. (1992) Cyclin A potentiates maturation-promoting factor activation in the early Xenopus embryo via inhibition of the tyrosine kinase that phosphorylates cdc2. J. Cell Biol. 118, 1109–1120.

    PubMed  CAS  Google Scholar 

  18. Reed, S. I., Bailly, E., Dulic, V., Hengst, L., Resnitzky, D., and Slingerland, J. (1994) G1 control in mammalian cells. J. Cell Sci. Suppl. 18, 69–73.

    PubMed  CAS  Google Scholar 

  19. Pines, J. (1997) Cyclin-dependent kinase inhibitors: the age of crystals. Biochim. Biophys. Acta 1332, M39–M42.

    PubMed  CAS  Google Scholar 

  20. Brooks, G., Poolman, R. A., and Li, J. M. (1998) Arresting developments in the cardiac myocyte cell cycle: role of cyclin-dependent kinase inhibitors. Cardiovasc. Res. 39, 301–311.

    PubMed  CAS  Google Scholar 

  21. Pavletich, N. P. (1999) Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J. Mol. Biol. 287, 821–828.

    PubMed  CAS  Google Scholar 

  22. Gartel, A. L., Serfas, M. S., and Tyner, A. L. (1996) p21-negative regulator of the cell cycle. Proc. Soc. Exp. Biol. Med. 213, 138–149.

    PubMed  CAS  Google Scholar 

  23. Sherr, C. J. (1996) Cancer cell cycles. Science 274, 1672–1627.

    PubMed  CAS  Google Scholar 

  24. Serrano, M. (1997) The tumor suppressor protein p16INK4a. Exp. Cell Res. 237, 7–13.

    PubMed  CAS  Google Scholar 

  25. Zhang, H., Hannon, G., J., and Beach, D. (1994) p21-containing cyclin kinases exist in both active and inactive states. Genes Dev. 8, 1750–1758.

    PubMed  CAS  Google Scholar 

  26. Prives, C. (1993) Doing the right thing: feedback control and p53. Curr. Opin. Cell Biol. 5, 214–218.

    PubMed  CAS  Google Scholar 

  27. Ewen, M. E. (1996) p53-dependent repression of cdk4 synthesis in transforming growth factor-b-induced G1 cell cycle arrest. J. Lab. Clin. Med. 128, 355–360.

    PubMed  CAS  Google Scholar 

  28. Weinberg, R. A. (1995) The retinoblastoma protein and cell cycle control. Cell 81, 323–330.

    PubMed  CAS  Google Scholar 

  29. Alcorta, D. A., Xiong, Y., Phelps, D., Hannon, G., Beach, D., and Barrett, J. C. (1996) Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc. Natl. Acad. Sci. USA 93, 13742–13747.

    PubMed  CAS  Google Scholar 

  30. Reynisdottir, I., Polyak, K., Iavarone, A., and Massague, J. (1995) Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-b. GenesDev. 9, 1831–1845.

    CAS  Google Scholar 

  31. el-Deiry, W. S., Tokino, T., Velculescu, V. E., et al. (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817-825.

    Google Scholar 

  32. Kamb, A., Gruis, N. A., Weaver-Feldhaus, J., et al. (1994) A cell cycle regulator potentially involved in genesis of many tumor types. Science 264, 436–440.

    PubMed  CAS  Google Scholar 

  33. Nobori, T., Miura, K., Wu, D. J., Lois, A., Takabayashi, K., and Carson, D. A. (1994) Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 368, 753–756.

    PubMed  CAS  Google Scholar 

  34. Levine, A. J. (1997) p53, the cellular gatekeeper for growth and division. Cell 88, 323–331.

    PubMed  CAS  Google Scholar 

  35. Porter, P. L., Malone, K. E., Heagerty, P. J., et al. (1997) Expression of cell-cycle regulators p27Kip 1 and cyclin E, alone and in combination, correlate with survival in young breast cancer patients. Nat. Med. 3, 222–225.

    PubMed  CAS  Google Scholar 

  36. Hunter, T. and Pines, J. (1994) Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell 79, 573–582.

    PubMed  CAS  Google Scholar 

  37. Yu, M., Zhan, Q., and Finn, O. J. (2002) Immune recognition of cyclin B1 as a tumor antigen is a result of its overexpression in human tumors that is caused by non-functional p53. Mol. Immunol. 38, 981–987.

    PubMed  CAS  Google Scholar 

  38. Finn, O. J. (2003) Cancer vaccines: between the idea and the reality. Nat. Rev. Immunol. 3, 630–641.

    PubMed  CAS  Google Scholar 

  39. Wolfel, T., Hauer, M., Schneider, J., et al. (1995) A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269, 1281–1284.

    PubMed  CAS  Google Scholar 

  40. Zuo, L., Weger, J., Yang, Q., et al. (1996) Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat. Genet. 12, 97–99.

    PubMed  CAS  Google Scholar 

  41. Payton, M., Chung, G., Yakowec, P., et al. (2004) in The Cell Cycle, Chromosomes andCancer, vol. 15. (Deutscher, M. P., Black, S., Boehmer, P. E., et al., eds.), Miami Nature Biotechnology Winter Short Reports, Miami Beach, FLA, pp. 59–60.

    Google Scholar 

  42. Marshall, M. S. (1995) Ras target proteins in eukaryotic cells. FASEB J. 9, 1311–1318.

    PubMed  CAS  Google Scholar 

  43. Lavoie, J. N., L’Allemain, G., Brunet, A., Muller, R., and Pouyssegur, J. (1996) Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J. Biol. Chem. 271, 20608–20616.

    PubMed  CAS  Google Scholar 

  44. Cheng, M., Sexl, V., Sherr, C. J., and Roussel, M. F. (1998) Assembly of cyclin D-dependent kinase and titration of p27Kip1 regulated by mitogen-activated protein kinase kinase (MEK1). Proc. Natl. Acad. Sci. USA 95, 1091–1096.

    PubMed  CAS  Google Scholar 

  45. Balmanno, K. and Cook, S. J. (1999) Sustained MAP kinase activation is required for the expression of cyclin D1, p21Cip1 and a subset of AP-1 proteins in CCL39 cells. Oncogene 18, 3085–3097.

    PubMed  CAS  Google Scholar 

  46. Meyer, C. A., Jacobs, H. W., and Lehner, C. F. (2002) Cyclin D-cdk4 is not a master regulator of cell multiplication in Drosophila embryos. Curr. Biol. 12, 661–666.

    PubMed  CAS  Google Scholar 

  47. Liu, J. J., Chao, J. R., Jiang, M. C., Ng, S. Y., Yen, J. J., and Yang-Yen, H. F. (1995) Ras transformation results in an elevated level of cyclin D1 and acceleration of G1 progression in NIH 3T3 cells. Mol. Cell. Biol. 15, 3654–3663.

    PubMed  CAS  Google Scholar 

  48. Serrano, M., Gomez-Lahoz, E., DePinho, R. A., Beach, D., and Bar-Sagi, D. (1995) Inhibition of ras-induced proliferation and cellular transformation by p16INK4. Science 267, 249–252.

    PubMed  CAS  Google Scholar 

  49. Sherr, C., J. and Roberts, J., M. (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512.

    PubMed  CAS  Google Scholar 

  50. Cheng, M., Olivier, P., Diehl, J. A., et al. (1999) The p21(Cip1) and p27(Kip1) CDK’ inhibitors’ are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J. 18, 1571–1583.

    PubMed  CAS  Google Scholar 

  51. Bottazzi, M. E., Zhu, X., Bohmer, R. M., and Assoian, R. K. (1999) Regulation of p21(cip1) expression by growth factors and the extracellular matrix reveals a role for transient ERK activity in G1 phase. J. Cell Biol. 146, 1255–1264.

    PubMed  CAS  Google Scholar 

  52. Sheaff, R. J., Groudine, M., Gordon, M., Roberts, J. M., and Clurman, B. E. (1997) Cyclin E-CDK2 is a regulator of p27Kip1. Genes Dev. 11, 1464–1478.

    PubMed  CAS  Google Scholar 

  53. Rivard, N., Boucher, M. J., Asselin, C., and L’Allemain, G. (1999) MAP kinase cascade is required for p27 downregulation and S phase entry in fibroblasts and epithelial cells. Am. J. Physiol. 277, C652–C664.

    PubMed  CAS  Google Scholar 

  54. Sklar, M. D. (1988) The ras oncogenes increase the intrinsic resistance of NIH 3T3 cells to ionizing radiation. Science 239, 645–647.

    PubMed  CAS  Google Scholar 

  55. Kasid, U., Suy, S., Dent, P., Ray, S., Whiteside, T. L., and Sturgill, T. W. (1996) Activation of Raf by ionizing radiation. Nature 382, 813–816.

    PubMed  CAS  Google Scholar 

  56. Abbott D. W. and Holt, J. T. (1999) Mitogen-activated protein kinase kinase 2 activation is essential for progression through the G2/M checkpoint arrest in cells exposed to ionizing radiation. J. Biol. Chem. 274, 2732–2742.

    PubMed  CAS  Google Scholar 

  57. Wright, J. H., Munar, E., Jameson, D. R., et al. (1999) Mitogen-activated protein kinase kinase activity is required for the G(2)/M transition of the cell cycle in mammalian fibroblasts. Proc. Natl. Acad. Sci. USA 96, 11335–11340.

    PubMed  CAS  Google Scholar 

  58. Lin, A. W., Barradas, M., Stone, J. C., van Aelst, L., Serrano, M., and Lowe, S. W. (1998) Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev. 12, 3008–3019.

    PubMed  CAS  Google Scholar 

  59. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D., and Lowe, S. W. (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 andp16INK4a. Cell 88, 93–602.

    Google Scholar 

  60. Vousden, K. H. (1995) Regulation of the cell cycle by viral oncoproteins. Semin. Cancer Biol. 6, 109–116.

    PubMed  CAS  Google Scholar 

  61. Grana, X., Garriga, J., and Mayol, X. (1998) Role of the retinoblastoma protein family pRB, p107 and p130 in the negative control of cell growth. Oncogene 17, 3365–3383.

    PubMed  Google Scholar 

  62. Harlow, E. (1996) A research shortcut from a common cold virus to human cancer. Cancer 78, 558–565.

    PubMed  CAS  Google Scholar 

  63. Fearon, E. R. (1997) Human cancer syndromes: clues to the origin and nature of cancer. Science 278, 1043–1050.

    PubMed  CAS  Google Scholar 

  64. Hurford, R. K., Jr., Cobrinik, D., Lee, M. H., and Dyson, N. (1997) pRB and p107/ p130 are required for the regulated expression of different sets of E2F responsive genes. Genes Dev. 11, 1447–1463.

    PubMed  CAS  Google Scholar 

  65. Dyson, N. (1998) The regulation of E2F by pRB-family proteins. Genes Dev. 12, 2245–2262.

    PubMed  CAS  Google Scholar 

  66. Nevins, J. R. (1992) E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science 258, 424–429.

    PubMed  CAS  Google Scholar 

  67. Helin, K., Wu, C. L., Fattaey, A. R., et al. (1993) Heterodimerization of the transcription factors E2F-1 and DP-1 leads to cooperative trans-activation. Genes Dev. 7, 1850–1861.

    PubMed  CAS  Google Scholar 

  68. Waga, S., Hannon, G. J., Beach, D., and Stillman, B. (1994) The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA.Nature 369, 574–578.

    PubMed  CAS  Google Scholar 

  69. Luo, Y., Hurwitz, J., and Massague, J. (1995) Cell-cycle inhibition by independent CDK and PCNA binding domains in p21Cip1. Nature 375, 159–161.

    Google Scholar 

  70. Knibiehler, M., Goubin, F., Escalas, N., et al. (1996) Interaction studies between the p21Cip1/Waf1 cyclin-dependent kinase inhibitor and proliferating cell nuclear antigen (PCNA) by surface plasmon resonance. FEBS Lett. 391, 66–70.

    PubMed  CAS  Google Scholar 

  71. de Bruin, A., Maiti, B., Jakoi, L., Timmers, C., Buerki, R., and Leone, G. (2003) Identification and characterization of E2F7, a novel mammalian E2F family member capable of blocking cellular proliferation. J. Biol. Chem. 278, 42041–42049.

    PubMed  Google Scholar 

  72. Morkel, M., Wenkel, J., Bannister, A. J., Kouzarides, T., and Hagemeier, C. (1997) An E2F-like repressor of transcription. Nature 390, 567–568.

    PubMed  CAS  Google Scholar 

  73. Trimarchi, J. M., Fairchild, B., Verona, R., Moberg, K., Andon, N., and Lees, J. A. (1998) E2F-6, a member of the E2F family that can behave as a transcriptional repressor. Proc. Natl. Acad. Sci. USA 95, 2850–2855.

    PubMed  CAS  Google Scholar 

  74. Gaubatz, S., Wood, J. G., and Livingston, D. M. (1998) Unusual proliferation arrest and transcriptional control properties of a newly discovered E2F family member, E2F-6. Proc. Natl. Acad. Sci. USA 95, 9190–9195.

    PubMed  CAS  Google Scholar 

  75. Trimarchi, J., M.,, Fairchild, B., Wen, J., and Lees, J., A. (2001) The E2F6 transcription factor is a component of the mammalian Bmi1-containing polycomb complex. Proc. Natl. Acad. Sci. USA 98, 1519–1524.

    PubMed  CAS  Google Scholar 

  76. Trouche, D., Cook, A., and Kouzarides, T. (1996) The CBP co-activator stimulates E2F1/DP1 activity. Nucleic Acids Res. 24, 4139–4145.

    PubMed  CAS  Google Scholar 

  77. Wang, L., Liu, L., and Berger, S. L. (1998) Critical residues for histone acetylation by Gcn5, functioning in Ada and SAGA complexes, are also required for transcriptional function in vivo. Genes Dev. 12, 640–653.

    PubMed  CAS  Google Scholar 

  78. Cress, W. D. and Nevins, J. R. (1996) A role for a bent DNA structure in E2F-mediated transcription activation. Mol. Cell. Biol. 16, 2119–2127.

    PubMed  CAS  Google Scholar 

  79. Lindeman, G. J., Gaubatz, S., Livingston, D. M., and Ginsberg, D. (1997) The sub-cellular localization of E2F-4 is cell-cycle dependent. Proc. Natl. Acad. Sci. USA 94, 5095–5100.

    PubMed  CAS  Google Scholar 

  80. Verona, R., Moberg, K., Estes, S., Starz, M., Vernon, J. P., and Lees, J. A. (1997) E2F activity is regulated by cell cycle-dependent changes in subcellular localization. Mol. Cell. Biol. 17, 7268–7282.

    PubMed  CAS  Google Scholar 

  81. Magae, J., Wu, C. L., Illenye, S., Harlow, E., and Heintz, N. H. (1996) Nuclear localization of DP and E2F transcription factors by heterodimeric partners and retinoblas-toma protein family members. J. Cell Sci. 109, 1717–1726.

    PubMed  CAS  Google Scholar 

  82. Apostolova, M. D., Ivanova, I. A., Dagnino, C., D’Souza, S. J., and Dagnino, L. (2002) Active nuclear import and export pathways regulate E2F-5 subcellular localization. J. Biol. Chem. 277, 34471–3479.

    PubMed  CAS  Google Scholar 

  83. Krek, W., Xu, G., and Livingston, D. M. (1995) Cyclin A-kinase regulation of E2F-1 DNA binding function underlies suppression of an S phase checkpoint. Cell 83, 1149–1158.

    PubMed  CAS  Google Scholar 

  84. Krek, W., Ewen, M. E., Shirodkar, S., Arany, Z., Kaelin, W. G. Jr., and Livingston, D. M. (1994) Negative regulation of the growth-promoting transcription factor E2F-1 by a stably bound cyclin A-dependent protein kinase. Cell 78, 161–172.

    PubMed  CAS  Google Scholar 

  85. Dynlacht, B. D., Flores, O., Lees, J. A., and Harlow, E. (1994) Differential regulation of E2F transactivation by cyclin/cdk2 complexes. Genes Dev. 8, 1772–1786.

    PubMed  CAS  Google Scholar 

  86. Hateboer, G., Kerkhoven, R. M., Shvarts, A., Bernards, R., and Beijersbergen, R. L. (1996) Degradation of E2F by the ubiquitin-proteasome pathway: regulation by retinoblastoma family proteins and adenovirus transforming proteins. Genes Dev. 10, 2960–2970.

    PubMed  CAS  Google Scholar 

  87. Hofmann, F., Martelli, F., Livingston, D. M., and Wang, Z. (1996) The retinoblas-toma gene product protects E2F-1 from degradation by the ubiquitin-proteasome pathway. Genes Dev. 10, 2949–2959.

    PubMed  CAS  Google Scholar 

  88. Brehm, A., Miska, E. A., McCance, D. J., Reid, J. L., Bannister, A. J., and Kouzarides, T. (1998) Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391, 597–601.

    PubMed  CAS  Google Scholar 

  89. Luo, R. X., Postigo, A. A., and Dean, D. C. (1998) Rb interacts with histone deacetylase to repress transcription. Cell 92, 463–473.

    PubMed  CAS  Google Scholar 

  90. Magnaghi-Jaulin, L., Groisman, R., Naguibneva, I., et al. (1998) Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 391, 601–605.

    PubMed  CAS  Google Scholar 

  91. Loyola, A., LeRoy, G., Wang, Y.-H., and Reinberg, D. (2001) Reconstitution of recombinant chromatin establishes a requirement for histone-tail modifications during chromatin assembly and transcription. Genes Dev. 15, 2837–2851.

    PubMed  CAS  Google Scholar 

  92. Takahashi, Y., Rayman, J. B., and Dynlacht, B. D. (2000) Analysis of promoter binding by the E2F and pRB families in vivo: distinct E2F proteins mediate activation and repression. Genes Dev. 14, 804–816.

    PubMed  CAS  Google Scholar 

  93. Ferreira, R., Naguibneva, I., Mathieu, M., et al. (2001) Cell cycle-dependent recruitment of HDAC-1 correlates with deacetylation of histone H4 on an Rb-E2F target promoter. EMBO Rep. 2, 794–799.

    PubMed  CAS  Google Scholar 

  94. Hassig, C. A., Fleischer, T. C., Billin, A. N., Schreiber, S. L., and Ayer, D. E. (1997) Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89, 341–347.

    PubMed  CAS  Google Scholar 

  95. Laherty, C. D., Yang, W. M., Sun, J. M., Davie, J. R., Seto, E., and Eisenman, R. N. (1997) Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell 89, 349–356.

    PubMed  CAS  Google Scholar 

  96. Nagy, L., Kao, H. Y., Chakravarti, D., et al. (1997) Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89, 373–380.

    PubMed  CAS  Google Scholar 

  97. Rayman, J. B., Takahashi, Y., Indjeian, V. B., et al. (2002) E2F mediates cell cycledependent transcriptional repression in vivo by recruitment of an HDAC1/mSin3B corepressor complex. Genes Dev. 16, 933–947.

    PubMed  CAS  Google Scholar 

  98. Bouzahzah, B., Fu, M., Iavarone, A., Factor, V. M., Thorgeirsson, S. S., and Pestell, R. G. (2000) Transforming growth factor-b1 recruits histone deacetylase 1 to a p 130 repressor complex in transgenic mice in vivo. Cancer Res. 60, 4531–4537.

    PubMed  CAS  Google Scholar 

  99. Harbour, J. W., Luo, R. X., Dei Santi, A., Postigo, A. A., and Dean, D. C. (1999) Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell 98, 859–869.

    PubMed  CAS  Google Scholar 

  100. Ohtsubo, M. and Roberts, J. M. (1993) Cyclin-dependent regulation of G1 in mammalian fibroblasts. Science 259, 1908–1912.

    PubMed  CAS  Google Scholar 

  101. Tsai, L. H., Lees, E., Faha, B., Harlow, E., and Riabowol, K. (1993) The cdk2 kinase is required for the G1-to-S transition in mammalian cells. Oncogene 8, 1593–1602.

    PubMed  CAS  Google Scholar 

  102. Resnitzky, D., Gossen, M., Bujard, H., and Reed, S. I. (1994) Acceleration of the G1/ S phase transition by expression of cyclins D1 and E with an inducible system. Mol. Cell. Biol. 14, 1669–1679.

    PubMed  CAS  Google Scholar 

  103. Zhao, J., Dynlacht, B., Imai, T., Hori, T., and Harlow, E. (1998) Expression of NPAT, a novel substrate of cyclin E-CDK2, promotes S-phase entry. Genes Dev. 12, 456–461.

    PubMed  CAS  Google Scholar 

  104. Zhao, J., Kennedy, B. K., Lawrence, B. D., Barbie, D. A., Matera, A. G., Fletcher, J. A., and Harlow, E. (2000) NPAT links cyclin E-Cdk2 to the regulation of replicationdependent histone gene transcription. Genes Dev. 14, 2283–2297.

    PubMed  CAS  Google Scholar 

  105. Ma, T., Van Tine, B. A., Wei, Y., et al. (2000) Cell cycle-regulated phosphorylation of p220(NPAT) by cyclin E/Cdk2 in Cajal bodies promotes histone gene transcription. Genes Dev. 14, 2298–2313.

    PubMed  CAS  Google Scholar 

  106. Woo, R. A. and Poon R. Y. (2003) Cyclin-dependent kinases and S phase control in mammalian cells. Cell Cycle 2, 316–324.

    PubMed  CAS  Google Scholar 

  107. Lacey, K. R., Jackson, P. K., and Stearns, T. (1999) Cyclin-dependent kinase control of centrosome duplication. Proc. Natl. Acad. Sci. USA 96, 2817–2822.

    PubMed  CAS  Google Scholar 

  108. Tarapore, P., Okuda, M., and Fukasawa, K. (2002) A mammalian in vitro centriole duplication system: evidence for involvement of CDK2/cyclin E and nucleophosmin/ B23 in centrosome duplication. Cell Cycle 1, 75–81.

    PubMed  CAS  Google Scholar 

  109. Pagano, M., Pepperkok, R., Verde, F., Ansorge, W., and Draetta, G. (1992) Cyclin A is required at two points in the human cell cycle. EMBO J. 11, 961–971.

    PubMed  CAS  Google Scholar 

  110. Ohtsubo, M., Theodoras, A. M., Schumacher, J., Roberts, J. M., and Pagano, M. (1995) Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. Mol. Cell. Biol. 15, 2612–2624.

    PubMed  CAS  Google Scholar 

  111. Resnitzky, D., Hengst, L., and Reed, S. I. (1995) Cyclin A-associated kinase activity is rate limiting for entrance into S phase and is negatively regulated. Mol. Cell. Biol. 15, 4347–4352.

    PubMed  CAS  Google Scholar 

  112. Jiang, W., McDonald, D., Hope, T. J., and Hunter, T. (1999) Mammalian Cdc7-Dbf4 protein kinase complex is essential for initiation of DNA replication. EMBOJ. 18, 5703–5713.

    CAS  Google Scholar 

  113. Herbig, U., Griffith, J. W., and Fanning, E. (2000) Mutation of cyclin/cdk phosphorylation sites in HsCdc6 disrupts a late step in initiation of DNA replication in human cells. Mol. Biol. Cell. 11, 4117–4130.

    PubMed  CAS  Google Scholar 

  114. Kelly, T. J. and Brown, G. W. (2000) Regulation of chromosome replication. Annu. Rev. Biochem. 69, 829–880.

    PubMed  CAS  Google Scholar 

  115. Nasheuer, H. P., Smith, R., Bauerschmidt, C., Grosse, F., and Weisshart, K. (2002) Initiation of eukaryotic DNA replication: regulation and mechanisms. Prog. Nucleic Acids Res. Mol. Biol. 72, 41–94.

    CAS  Google Scholar 

  116. Rao, P. N. and Johnson, R. T. (1970) Mammalian cell fusion: studies on the regulation of DNA synthesis and mitosis. Nature 225, 159–164.

    PubMed  CAS  Google Scholar 

  117. Marahrens, Y. and Stillman, B. (1992) A yeast chromosomal origin of DNA replication defined by multiple functional elements. Science 255, 817–823.

    PubMed  CAS  Google Scholar 

  118. Bell, S. P. and Stillman, B. (1992) ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 357, 128–134

    PubMed  CAS  Google Scholar 

  119. Gavin, K. A., Hidaka, M., and Stillman, B. (1995) Conserved initiator proteins in eukaryotes. Science 270, 1667–1671.

    PubMed  CAS  Google Scholar 

  120. Iizuka, M. and Stillman, B. (1999) Histone acetyltransferase HBO1 interacts with the ORC1 subunit of the human initiator protein. J. Biol. Chem. 274, 23027–23034

    PubMed  CAS  Google Scholar 

  121. Hateboer, G., Wobst, A., Petersen, B. O., et al. (1998) Cell cycle-regulated expression of mammalian CDC6 is dependent on E2F. Mol. Cell. Biol. 18, 6679–6697.

    PubMed  CAS  Google Scholar 

  122. Yan, Z., DeGregori, J., Shohet, R., et al. (1998) Cdc6 is regulated by E2F and is essential for DNA replication in mammalian cells. Proc. Natl. Acad. Sci. USA 95, 3603–3608.

    PubMed  CAS  Google Scholar 

  123. Coleman, T. R., Carpenter, P. B., and Dunphy, W. G. (1996) The Xenopus Cdc6 protein is essential for the initiation of a single round of DNA replication in cell-free extracts. Cell 87, 53–63.

    PubMed  CAS  Google Scholar 

  124. Cook, J. G., Park, C. H., Burke, T. W., et al. (2002) Analysis of Cdc6 function in the assembly of mammalian prereplication complexes. Proc. Natl. Acad. Sci. USA 99, 1347–1352.

    PubMed  CAS  Google Scholar 

  125. Saha, P., Chen, J., Thome, K. C., et al. (1998) Human CDC6/Cdc18 associates with Orc1 and cyclin-cdk and is selectively eliminated from the nucleus at the onset of S phase. Mol. Cell. Biol. 18, 2758–2767.

    PubMed  CAS  Google Scholar 

  126. Jiang, W., Wells, N. J., and Hunter, T. (1999) Multistep regulation of DNA replication by Cdk phosphorylation of HsCdc6. Proc. Natl. Acad. Sci. USA 96, 6193–6198.

    PubMed  CAS  Google Scholar 

  127. Mendez, J. and Stillman, B. (2000) Chromatin association of human origin recognition complex, cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prerepliaction complexes in late mitosis. Mol. Cell. Biol. 20, 8602–8612.

    PubMed  CAS  Google Scholar 

  128. Petersen, B. O., Wagener, C., Marinoni, F., et al. (2000) Cell cycle-and cell growthregulated proteolysis of mammalian CDC6 is dependent on APC-CDH1. Genes Dev. 14, 2330–2343.

    PubMed  CAS  Google Scholar 

  129. Petersen, B. O., Lukas, J., Sorensen, C. S., Bartek, J., and Helin, K. (1999) Phosphorylation of mammalian CDC6 by cyclin A/CDK2 regulates its subcellular localization. EMBO J. 18, 396–410.

    PubMed  CAS  Google Scholar 

  130. Biermann, E., Baack, M., Kreitz, S., and Knippers, R. (2002) Synthesis and turnover of the replicative Cdc6 protein during the HeLa cell cycle. Eur. J. Biochem. 269, 1040–1046.

    PubMed  CAS  Google Scholar 

  131. Kimura, H., Nozaki, N., and Sugimoto, K. (1994) DNA polymerase alpha associated protein P1, a murine homolog of yeast MCM3, changes its intranuclear distribution during the DNA synthetic period. EMBO J. 13, 4311–4320.

    PubMed  CAS  Google Scholar 

  132. Todorov, I. T., Pepperkok, R., Philipova, R. N., Kearsey, S. E., Ansorge, W., and Werner, D. (1994) A human nuclear protein with sequence homology to a family of early S phase proteins is required for entry into S phase and for cell division. J. Cell Sci. 107, 253–265.

    PubMed  CAS  Google Scholar 

  133. Fujita, M., Kiyono, T., Hayashi, Y., and Ishibashi, M. (1996) Inhibition of S-phase entry of human fibroblasts by an antisense oligomer against hCDC47. Biochem. Biophys. Res. Commun. 219, 604–607.

    PubMed  CAS  Google Scholar 

  134. Kearsey, S. E., and Labib, K. (1998) MCM proteins: evolution, properties, and role in DNA replication. Biochim. Biophys. Acta 1398, 113–136.

    PubMed  CAS  Google Scholar 

  135. Tye, B. K. (1999) MCM proteins in DNA replication. Annu. Rev. Biochem. 68, 649–686.

    PubMed  CAS  Google Scholar 

  136. Todorov, I. T., Attaran, A., and Kearsey, S. E. (1995) BM28, a human member of the MCM2-3-5 family, is displaced from chromatin during DNA replication. J. CellBiol. 129, 1433–1445.

    CAS  Google Scholar 

  137. Thommes, P., Fett, R., Schray, B., et al. (1992) Properties of the nuclear P1 protein, a mammalian homologue of the yeast Mcm3 replication protein. Nucleic Acids Res. 20, 1069–1074.

    PubMed  CAS  Google Scholar 

  138. Ishimi, Y. (1997) A DNA helicase activity is associated with an MCM4,-6, and-7 protein complex. J. Biol. Chem. 272, 24508–24513.

    PubMed  CAS  Google Scholar 

  139. Hopwood, B. and Dalton, S. (1996) Cdc45p assembles into a complex with Cdc46p/ Mcm5p, is required for minichromosome maintenance, and is essential for chromosomal DNA replication. Proc. Natl. Acad. Sci. USA 93, 12309–12314.

    PubMed  CAS  Google Scholar 

  140. Hardy, C. F. (1997) Identification of Cdc45p, an essential factor required for DNA replication. Gene 187, 239–246.

    PubMed  CAS  Google Scholar 

  141. Zou, L., Mitchell, J., and Stillman, B. (1997) CDC45, a novel yeast gene that functions with the origin recogniton complex Mcm proteins in initiation of DNA replication. Mol. Cell. Biol. 17, 553–563.

    PubMed  CAS  Google Scholar 

  142. Saha, P., Thome, K. C., Yamaguchi, R., Hou, Z., Weremowicz, S., and Dutta, A. (1998) The human homolog of Saccharomyces cerevisiae CDC45. J. Biol. Chem. 273, 18205–18209.

    PubMed  CAS  Google Scholar 

  143. Mimura, S. and Takisawa, H. (1998) Xenopus Cdc45-dependent loading of DNA polymerase alpha onto chromatin under the control of S-phase Cdk. EMBO J. 17b 5699–5607.

    Google Scholar 

  144. Zou, L., and Stillman, B. (1998) Formation of preinitiation complex by S-phase cyclin CDK-dependent loading of Cdc45p onto chromatin. Science 280, 593–596.

    PubMed  CAS  Google Scholar 

  145. Pagano, M., Pepperkok, R., Lukas, J., et al. (1993) Regulation of the cell cycle by the cdk2 protein kinase in cultured human fibroblasts. J. Cell Biol. 121, 101–111.

    PubMed  CAS  Google Scholar 

  146. Hendrickson, M., Madine, M., Dalton, S., and Gautier, J. (1996) Phosphorylation of MCM4 by cdc2 protein kinase inhibits the activity of the minichromosome maintenance complex. Proc. Natl. Acad. Sci. USA 93, 12223–12228.

    PubMed  CAS  Google Scholar 

  147. Fujita, M., Yamada, C., Tsurumi, T., Hanaoka, F., Matsuzawa, K., and Inagaki, M. (1998) Cell cycle-and chromatin binding state-dependent phosphorylation of human MCM heterohexameric complexes. A role for cdc2 kinase. J. Biol. Chem. 273, 17095–17101.

    PubMed  CAS  Google Scholar 

  148. Hartwell, L. H. (1973) Three additional genes required for deoxyribonucleic acid synthesis in Saccharomyces cerevisiae. J. Bacteriol. 115, 966–974.

    PubMed  CAS  Google Scholar 

  149. Masai, H., Miyake, T., and Arai, K. (1995) hsk1+, a Schizosaccharomyces pombegene related to Saccharomyces cerevisiae CDC7, is required for chromosomal replication. EMBO J. 14, 3094–3104.

    PubMed  CAS  Google Scholar 

  150. Masai, H., Miyake, T., and Arai, K. (1995) hsk1+, a Schizosaccharomyces pombe gene related to Saccharomyces cerevisiae CDC7, is required for chromosomal replication. EMBO J. 14, 3094–3104.

    PubMed  CAS  Google Scholar 

  151. Sato, N., Arai, K., and Masai, H. (1997) Human and Xenopus cDNAs encoding budding yeast Cdc7-related kinases: in vitro phosphorylation of MCM subunits by a putative human homologue of Cdc7. EMBO J. 16, 4340–4351.

    PubMed  CAS  Google Scholar 

  152. Hess, G. F., Drong, R. F., Weiland, K. L., Slightom, J. L., Sclafani, R. A., and Hollingsworth, R. E. (1998) A human homolog of the yeast CDC7 gene is overexpressed in some tumors and transformed cell lines. Gene 211, 133–140.

    PubMed  CAS  Google Scholar 

  153. Kumagai, H., Sato, N., Yamada, M., et al. (1999) A novel growth-and cell cycleregulated protein, ASK, activates human Cdc7-related kinase and is essential for G1/ S transition in mammalian cells. Mol. Cell. Biol. 19, 5083–5095.

    PubMed  CAS  Google Scholar 

  154. Lepke, M., Putter, V., Staib, C., et al. (1999) Identification, characterization and chromosomal localization of the cognate human and murine DBF4 genes. Mol. Gen. Genet. 262, 220–229.

    PubMed  CAS  Google Scholar 

  155. Donaldson, A. D., Fangman, W. L., and Brewer, B. J. (1998) Cdc7 is required throughout the yeast S phase to activate replication origins. Genes Dev. 12, 491–501.

    PubMed  CAS  Google Scholar 

  156. Bousset, K.. and Diffley, J. F. (1998) The Cdc7 protein kinase is required for origin firing during S phase. Genes Dev. 12, 480–490.

    PubMed  CAS  Google Scholar 

  157. Hartley, K. O., Gell, D., Smith, G. C., et al. (1995) DNA-dependent protein kinase catalytic subunit: a relative of phosphatidylinositol 3-kinase and the ataxia telangiectasia gene product. Cell 82, 849–856.

    PubMed  CAS  Google Scholar 

  158. Savitsky, K., Bar-Shira, A., Gilad, S., et al. (1995) A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268, 1749–1753.

    PubMed  CAS  Google Scholar 

  159. Bentley, N. J., Holtzman, D. A., Flaggs, G., et al. (1996) The Schizosaccharomyces pombe rad3 checkpoint gene. EMBO J. 15, 6641–6651.

    PubMed  CAS  Google Scholar 

  160. Keegan, K. S., Holtzman, D. A., Plug, A. W., et al. (1996) The Atr and Atm protein kinases associate with different sites along meiotically pairing chromosomes. Genes Dev. 10, 2423–2437.

    PubMed  CAS  Google Scholar 

  161. Gately, D. P., Hittle, J. C., Chan, G. K., and Yen, T. J. (1998) Characterization of ATM expression, localization, and associated DNA-dependent protein kinase activity. Mol. Biol. Cell. 9, 2361–2374.

    PubMed  CAS  Google Scholar 

  162. Lakin, N. D., Hann, B. C., and Jackson, S. P. (1999) The ataxia-telangiectasia related protein ATR mediates DNA-dependent phosphorylation of p53. Oncogene 18, 3989–3995.

    PubMed  CAS  Google Scholar 

  163. Shieh, S. Y., Ikeda, M., Taya, Y., and Prives, C. (1997) DNA damage-induced phos-phorylation of p53 alleviates inhibition by MDM2. Cell 91, 325–334.

    PubMed  CAS  Google Scholar 

  164. Siliciano, J. D., Canman, C. E., Taya, Y., Sakaguchi, K., Appella, E., and Kastan, M. B. (1997) DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev. 11, 3471–3481.

    PubMed  CAS  Google Scholar 

  165. Banin, S., Moyal, L., Shieh, S., et al. (1998) Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281, 1674–1677.

    PubMed  CAS  Google Scholar 

  166. Canman, C. E., Lim, D. S., Cimprich, K. A., et al. (1998) Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281, 1677–1679.

    PubMed  CAS  Google Scholar 

  167. Colman, M. S., Afshari, C. A., and Barrett, J. C. (2000) Regulation of p53 stability and activity in response to genotoxic stress. Mutat. Res. 462, 179–188.

    PubMed  CAS  Google Scholar 

  168. Ryan, K. M., Phillips, A. C., and Vousden, K. H. (2001) Regulation and function of the p53 tumor suppressor protein. Curr. Opin. Cell. Biol. 13, 332–337.

    PubMed  CAS  Google Scholar 

  169. Taylor, W. R. and Stark, G. R. (2001) Regulation of the G2/M transition by p53. Oncogene 20, 1803–1815.

    PubMed  CAS  Google Scholar 

  170. Wahl, G. M. and Carr, A. M. (2001) The evolution of diverse biological responses to DNA damage: insights from yeast and p53. Nat. Cell Biol. 3, E277–E286.

    PubMed  CAS  Google Scholar 

  171. Nayak, B. K. and Das, G. M. (2002) Stabilization of p53 and transactivation of its target genes in response to replication blockade. Oncogene 21, 7226–7229.

    PubMed  CAS  Google Scholar 

  172. Tibbetts, R. S., Brumbaugh, K. M., Williams, J. M., et al. (1999) A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev. 13, 152–157.

    PubMed  CAS  Google Scholar 

  173. Winkler, K. E., Swenson, K. I., Kornbluth, S., and Means, A. R. (2000) Requirement of the prolyl isomerase Pin1 for the replication checkpoint. Science 287, 1644–1647.

    PubMed  CAS  Google Scholar 

  174. Ryo, A., Nakamura, M., Wulf, G., Liou, Y. C., and Lu, K. P. (2001) Pin1 regulates turnover and subcellular localization of b-catenin by inhibiting its interaction with APC. Nat. Cell Biol. 3, 793–801.

    PubMed  CAS  Google Scholar 

  175. Wulf, G. M., Ryo, A., Wulf, G. G., et al. (2001) Pin1 is overexpressed in breast cancer and cooperates with Ras signaling in increasing the transcriptional activity of c-Jun towards cyclin D1. EMBO J. 20, 3459–3472.

    PubMed  CAS  Google Scholar 

  176. Liou, Y. C., Ryo, A., Huang, H. K., et al. (2002) Loss of Pin1 function in the mouse causes phenotypes resembling cyclin D1-null phenotypes. Proc. Natl. Acad. Sci. USA 99, 1335–1340.

    PubMed  CAS  Google Scholar 

  177. Wulf, G. M., Liou, Y. C., Ryo, A., Lee, S. W., and Lu, K. P. (2002) Role of Pin1 in the regulation of p53 stability and p21 transactivation, and cell cycle checkpoints in response to DNA damage. J. Biol. Chem. 17, 17.

    Google Scholar 

  178. Boddy, M. N. and Russell, P. (1999) DNA replication checkpoint control. Front. Biosci. 4, D841–D848.

    PubMed  CAS  Google Scholar 

  179. Chan, D. W., Chen, B. P., Prithivirajsingh, S., et al. (2002) Autophosphorylation of the DNA-dependent protein kinase catalytic subunit is required for rejoining of DNA double-strand breaks. Genes Dev. 16, 2333–2338.

    PubMed  CAS  Google Scholar 

  180. Woo, R. A., Jack, M. T., Xu, Y., Burma, S., Chen, D. J., and Lee, P. W. (2002) DNA damage-induced apoptosis requires the DNA-dependent protein kinase, and is mediated by the latent population of p53. EMBO J. 21, 3000–3008.

    PubMed  CAS  Google Scholar 

  181. Parker, A. E., Van de Weyer, I., Laus, M. C., et al. (1998) A human homologue of the Schizosaccharomycespombe rad1+checkpoint gene encodes an exonuclease. J. Biol. Chem. 273, 18332–18339.

    PubMed  CAS  Google Scholar 

  182. Thelen, M. P., Ven clovas, C., and Fidelis, K. (1999) A sliding clamp model for the Rad1 family of cell cycle checkpoint proteins. Cell 96, 769–770.

    PubMed  CAS  Google Scholar 

  183. Volkmer, E. and Karnitz, L. M. (1999) Human homologs of Schizosaccharomyces pombe rad1, hus1, and rad9 form a DNA damage-responsive protein complex. J. Biol. Chem. 274, 567–570.

    PubMed  CAS  Google Scholar 

  184. Hang, H. and Lieberman, H. B. (2000) Physical interactions among human checkpoint control proteins HUS1p, RAD1p, and RAD9p, and implications for the regulation of cell cycle progression. Genomics 65, 24–33.

    PubMed  CAS  Google Scholar 

  185. Zou, L., Cortez, D., and Elledge, S. J. (2002) Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin. Genes Dev. 16, 198–208.

    PubMed  CAS  Google Scholar 

  186. Dahm, K., and Hubscher, U. (2002) Colocalization of human Rad17 and PCNA in late S phase of the cell cycle upon replication block. Oncogene 21, 7710–7719.

    PubMed  CAS  Google Scholar 

  187. Brown, A. L., Lee, C. H., Schwarz, J. K., Mitiku, N., Piwnica-Worms, H., and Chung, J. H. (1999) A human Cds1-related kinase that functions downstream of ATM protein in the cellular response to DNA damage. Proc. Natl. Acad. Sci. USA 96, 3745–3750.

    PubMed  CAS  Google Scholar 

  188. Chaturvedi, P., Eng, W. K., Zhu, Y., et al. (1999) Mammalian Chk2 is a downstream effector of the ATM-dependent DNA damage checkpoint pathway. Oncogene 18, 4047–4054.

    PubMed  CAS  Google Scholar 

  189. Matsuoka, S., Huang, M., and Elledge, S. J. (1998) Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282, 1893–1897.

    PubMed  CAS  Google Scholar 

  190. Peng, C. Y., Graves, P. R., Thoma, R. S., Wu, Z., Shaw, A. S., and Piwnica-Worms, H. (1997) Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277, 1501–1505.

    PubMed  CAS  Google Scholar 

  191. Dalal, S. N., Schweitzer, C. M., Gan, J., and DeCaprio, J. A. (1999) Cytoplasmic localization of human cdc25C during interphase requires an intact 14-3-3 binding site. Mol. Cell. Biol. 19, 4465–4479.

    PubMed  CAS  Google Scholar 

  192. Masui, Y. and Markert, C. L. (1971) Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J. Exp. Zool. 177, 129–145.

    PubMed  CAS  Google Scholar 

  193. Dunphy, W. G., Brizuela, L., Beach, D., and Newport, J. (1988) The Xenopus cdc2 protein is a component of MPF, a cytoplasmic regulator of mitosis. Cell 54, 423–431.

    PubMed  CAS  Google Scholar 

  194. Gautier, J., Norbury, C., Lohka, M., Nurse, P., and Maller, J. (1988) Purified maturation-promoting factor contains the product of a Xenopus homolog of the fission yeast cell cycle control gene cdc2+. Cell 54, 433–439.

    PubMed  CAS  Google Scholar 

  195. Smits, V. A. and Medema, R. H. (2001) Checking out the G(2)/M transition. Biochim. Biophys. Acta 1519, 1–12.

    PubMed  CAS  Google Scholar 

  196. Takizawa, C. G. and Morgan, D. O. (2000) Control of mitosis by changes in the subcellular location of cyclin-B1-Cdk1 and Cdc25C. Curr. Opin. Cell Biol. 12, 658–665.

    PubMed  CAS  Google Scholar 

  197. Pines, J. and Hunter, T. (1989) Isolation of a human cyclin cDNA: evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34cdc2. Cell 58, 833–846.

    PubMed  CAS  Google Scholar 

  198. Brandeis, M., Rosewell, I., Carrington, M., et al. (1998) Cyclin B2-null mice develop normally and are fertile whereas cyclin B1-null mice die in utero. Proc. Natl. Acad. Sci. USA 95, 4344–4349.

    PubMed  CAS  Google Scholar 

  199. Jackman, M., Firth, M., and Pines, J. (1995) Human cyclins B1 and B2 are localized to strikingly different structures: B1 to microtubules, B2 primarily to the Golgi apparatus. EMBO J. 14, 1646–1654.

    PubMed  CAS  Google Scholar 

  200. Endicott, J. A., Nurse, P., and Johnson, L. N. (1994) Mutational analysis supports a structural model for the cell cycle protein kinase p34. Protein Eng. 7, 243–253.

    PubMed  CAS  Google Scholar 

  201. Atherton-Fessler, S., Parker, L. L., Geahlen, R. L., and Piwnica-Worms, H. (1993) Mechanisms of p34cdc2 regulation. Mol. Cell. Biol. 13, 1675–1685.

    PubMed  CAS  Google Scholar 

  202. Lundgren, K., Walworth, N., Booher, R., Dembski, M., Kirschner, M., and Beach, D. (1991) mik1 and wee1 cooperate in the inhibitory tyrosine phosphorylation of cdc2. Cell 64, 1111–1122.

    PubMed  CAS  Google Scholar 

  203. Parker, L. L., and Piwnica-Worms, H. (1992) Inactivation of the p34cdc2-cyclin B complex by the human WEE1 tyrosine kinase. Science 257, 1955–1957.

    PubMed  CAS  Google Scholar 

  204. Li, J., Meyer, A. N., and Donoghue, D. J. (1995) Requirement for phosphorylation of cyclin B1 for Xenopus oocyte maturation. Mol. Biol. Cell. 6, 1111–1124.

    PubMed  CAS  Google Scholar 

  205. Sadhu, K., Reed, S. I., Richardson, H., and Russell, P. (1990) Human homolog of fission yeast cdc25 mitotic inducer is predominantly expressed in G2. Proc. Natl. Acad. Sci. USA 87, 5139–5143.

    PubMed  CAS  Google Scholar 

  206. Galaktionov, K. and Beach, D. (1991) Specific activation of cdc25 tyrosine phos-phatases by B-type cyclins: evidence for multiple roles of mitotic cyclins. Cell 67, 1181–1194.

    PubMed  CAS  Google Scholar 

  207. Hoffmann, I., Clarke, P. R., Marcote, M. J., Karsenti, E., and Draetta, G. (1993) Phosphorylation and activation of human cdc25-C by cdc2-cyclin B and its involvement in the self-amplification of MPF at mitosis. EMBO J. 12, 53–63.

    PubMed  CAS  Google Scholar 

  208. Gabrielli, B. G., De Souza, C. P., Tonks, I. D., Clark, J. M., Hayward, N. K., and Ellem, K. A. (1996) Cytoplasmic accumulation of cdc25B phosphatase in mitosis triggers centrosomal microtubule nucleation in HeLa cells. J. Cell Sci. 109, 1081–1093.

    PubMed  CAS  Google Scholar 

  209. Vigo, E., Muller, H., Prosperini, E., Hateboer, G., Cartwright, P., Moroni, M. C., and Helin, K. (1999) CDC25 A phosphatase is a target of E2F and is required for efficient E2F-induced S phase. Mol. Cell. Biol. 19, 6379–6395.

    PubMed  CAS  Google Scholar 

  210. Izumi, T., Walker, D. H., and Maller, J. L. (1992) Periodic changes in phosphorylation of the Xenopus cdc25 phosphatase regulate its activity. Mol. Biol. Cell. 3, 927–939.

    PubMed  CAS  Google Scholar 

  211. Kumagai, A. and Dunphy, W. G. (1992) Regulation of the cdc25 protein during the cell cycle in Xenopus extracts. Cell 70, 139–151.

    PubMed  CAS  Google Scholar 

  212. Izumi, T. and Maller, J. L. (1993) Elimination of cdc2 phosphorylation sites in the cdc25 phosphatase blocks initiation of M-phase. Mol. Biol. Cell. 4, 1337–1350.

    PubMed  CAS  Google Scholar 

  213. Roshak, A. K., Capper, E. A., Imburgia, C., Fornwald, J., Scott, G., and Marshall, L. A. (2000) The human polo-like kinase, PLK, regulates cdc2/cyclin B through phosphorylation and activation of the cdc25C phosphatase. Cell Signal 12, 405–411.

    PubMed  CAS  Google Scholar 

  214. Chen, M. S., Hurov, J., White, L. S., Woodford-Thomas, T., and Piwnica-Worms, H. (2001) Absence of apparent phenotype in mice lacking Cdc25C protein phosphatase. Mol. Cell. Biol. 21, 3853–3861.

    PubMed  CAS  Google Scholar 

  215. Mailand, N., Podtelejnikov, A. V., Groth, A., Mann, M., Bartek, J., and Lukas, J. (2002) Regulation of G(2)/M events by Cdc25A through phosphorylation-dependent modulation of its stability. EMBO J. 21, 5911–5920.

    PubMed  CAS  Google Scholar 

  216. Fode, C., Motro, B., Yousefi, S., Heffernan, M., and Dennis, J. W. (1994) Sak, a murine protein-serine/threonine kinase that is related to the Drosophila polo kinase and involved in cell proliferation. Proc. Natl. Acad. Sci. USA 91, 6388–6392.

    PubMed  CAS  Google Scholar 

  217. Glover, D. M., Hagan, I. M., and Tavares, A. A. (1998) Polo-like kinases: a team that plays throughout mitosis. Genes Dev. 12, 3777–377.

    PubMed  CAS  Google Scholar 

  218. Lee, K. S., Grenfell, T. Z., Yarm, F. R., and Erikson, R. L. (1998) Mutation of the polo-box disrupts localization and mitotic functions of the mammalian polo kinase Plk. Proc. Natl. Acad. Sci. USA 95, 9301–9306.

    PubMed  CAS  Google Scholar 

  219. Nigg, E. A. (1998) Polo-like kinases: positive regulators of cell division from start to finish. Curr. Opin. Cell. Biol. 10, 776–783.

    PubMed  CAS  Google Scholar 

  220. Hamanaka, R., Smith, M. R., O’Connor, P. M., et al. (1995) Polo-like kinase is a cell cycle-regulated kinase activated during mitosis. J. Biol. Chem. 270, 21086–21091.

    PubMed  CAS  Google Scholar 

  221. Simmons, D. L., Neel, B. G., Stevens, R., Evett, G., and Erikson, R. L. (1992) Identification of an early-growth-response gene encoding a novel putative protein kinase. Mol. Cell. Biol. 12, 4164–4169.

    PubMed  CAS  Google Scholar 

  222. Xie, S., Wu, H., Wang, Q., et al. (2002) Genotoxic stress-induced activation of Plk3 is partly mediated by Chk2. Cell Cycle 1, 424–429.

    PubMed  CAS  Google Scholar 

  223. Peng, C. Y., Graves, P. R., Ogg, S., et al. (1998) C-TAK1 protein kinase phosphory-lates human Cdc25C on serine 216 and promotes 14-3-3 protein binding. Cell Growth Differ. 9, 197–208.

    PubMed  CAS  Google Scholar 

  224. Aitken, A., Collinge, D. B., van Heusden, B. P., et al. (1992) 14-3-3 proteins: a highly conserved, widespread family of eukaryotic proteins. Trends Biochem. Sci. 17, 498–501.

    PubMed  CAS  Google Scholar 

  225. Heald, R., McLoughlin, M., and McKeon, F. (1993) Human wee1 maintains mitotic timing by protecting the nucleus from cytoplasmically activated Cdc2 kinase. Cell 74, 463–474.

    PubMed  CAS  Google Scholar 

  226. Ogg, S., Gabrielli, B., and Piwnica-Worms, H. (1994) Purification of a serine kinase that associates with and phosphorylates human Cdc25C on serine 216. J. Biol. Chem. 269, 30461–30469.

    PubMed  CAS  Google Scholar 

  227. Zeng, Y., Forbes, K. C., Wu, Z., Moreno, S., Piwnica-Worms, H., and Enoch, T. (1998) Replication checkpoint requires phosphorylation of the phosphatase Cdc25 by Cds1 or Chk1. Nature 395, 507–510.

    PubMed  CAS  Google Scholar 

  228. Furnari, B., Blasina, A., Boddy, M. N., McGowan, C. H., and Russell, P. (1999) Cdc25 inhibited in vivo and in vitro by checkpoint kinases Cds 1 and Chk 1. Mol. Biol. Cell. 10, 833–845.

    PubMed  CAS  Google Scholar 

  229. Hagting, A., Jackman, M., Simpson, K., and Pines, J. (1999) Translocation of cyclin B1 to the nucleus at prophase requires a phosphorylation-dependent nuclear import signal. Curr. Biol. 9, 680–689.

    PubMed  CAS  Google Scholar 

  230. Pines, J. and Hunter, T. (1994) The differential localization of human cyclins A and B is due to a cytoplasmic retention signal in cyclin B. EMBO J. 13, 3772–3781.

    PubMed  CAS  Google Scholar 

  231. Yang, J., Bardes, E. S., Moore, J. D., Brennan, J., Powers, M. A., and Kornbluth, S. (1998) Control of cyclin B1 localization through regulated binding of the nuclear export factor CRM1. Genes Dev. 12, 2131–2143.

    PubMed  CAS  Google Scholar 

  232. Moore, J. D., Yang, J., Truant, R., and Kornbluth, S. (1999) Nuclear import of Cdk/ cyclin complexes: identification of distinct mechanisms for import of Cdk2/cyclin E and Cdc2/cyclin B1. J. Cell. Biol. 144, 213–224.

    PubMed  CAS  Google Scholar 

  233. Kong, M., Barnes, E. A., Ollendorff, V., and Donoghue, D. J. (2000) Cyclin F regulates the nuclear localization of cyclin B1 through a cyclin-cyclin interaction. EMBO J. 19, 1378–1388.

    PubMed  CAS  Google Scholar 

  234. Blangy, A., Lane, H. A., d’Herin, P., Harper, M., Kress, M., and Nigg, E. A. (1995) Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83, 1159–1169.

    PubMed  CAS  Google Scholar 

  235. Lowe, M., Rabouille, C., Nakamura, N., et al. (1998) Cdc2 kinase directly phosphorylates the cis-Golgi matrix protein GM130 and is required for Golgi fragmentation in mitosis. Cell 94, 783–793.

    PubMed  CAS  Google Scholar 

  236. Yamashiro, S., Yamakita, Y., Ishikawa, R., and Matsumura, F. (1990) Mitosis-specific phosphorylation causes 83K non-muscle caldesmon to dissociate from microfilaments. Nature 344, 675–678.

    PubMed  CAS  Google Scholar 

  237. Furuno, N., den Elzen, N., and Pines, J. (1999) Human cyclin A is required for mitosis until mid prophase. J. Cell Biol. 147, 295–306.

    PubMed  CAS  Google Scholar 

  238. Goldstone, S., Pavey, S., Forrest, A., Sinnamon, J., and Gabrielli, B. (2001) Cdc25-dependent activation of cyclin A/cdk2 is blocked in G2 phase arrested cells independently of ATM/ATR. Oncogene 20, 921–932.

    PubMed  CAS  Google Scholar 

  239. Glotzer, M., Murray, A. W., and Kirschner, M. W. (1991) Cyclin is degraded by the ubiquitin pathway. Nature 349, 132–138.

    PubMed  CAS  Google Scholar 

  240. Harper, J. W., Burton, J. L., and Solomon, M. J. (2002) The anaphase-promoting complex: it’s not just for mitosis any more. Genes Dev. 16, 2179–2206.

    PubMed  CAS  Google Scholar 

  241. Golan, A., Yudkovsky, Y., and Hershko, A. (2002) The cyclin-ubiquitin ligase activity of cyclosome/APC is jointly activated by protein kinases Cdk1-cyclin B and Plk. J. Biol. Chem. 277, 15552–15557.

    PubMed  CAS  Google Scholar 

  242. Kotani, S., Tugendreich, S., Fujii, M., et al. (1998) PKA and MPF-activated polo-like kinase regulate anaphase-promoting complex activity and mitosis progression. Mol. Cell 1, 371–380.

    PubMed  CAS  Google Scholar 

  243. Shteinberg, M., Protopopov, Y., Listovsky, T., Brandeis, M., and Hershko, A. (1999) Phosphorylation of the cyclosome is required for its stimulation by Fizzy/cdc20. Biochem. Biophys. Res. Commun. 260, 193–198.

    PubMed  CAS  Google Scholar 

  244. Chestukhin, A., Pfeffer, C., Milligan, S., DeCaprio, J. A., and Pellman, D. (2003) Processing, localization, and requirement of human separase for normal anaphase progression. Proc. Natl. Acad. Sci. USA 100, 4574–4579.

    PubMed  CAS  Google Scholar 

  245. Fontijn, R. D., Goud, B., Echard, A., et al. (2001) The human kinesin-like protein RB6K is under tight cell cycle control and is essential for cytokinesis. Mol. Cell. Biol. 21, 2944–2955.

    PubMed  CAS  Google Scholar 

  246. Noguchi, T., Arai, R., Motegi, F., Nakano, K., and Mabuchi, I. (2001) Contractile ring formation in Xenopus egg and fission yeast. Cell Struct. Funct. 26, 545–554.

    PubMed  CAS  Google Scholar 

  247. Cao, L. G. and Wang, Y. L. (1996) Signals from the spindle midzone are required for the stimulation of cytokinesis in cultured epithelial cells. Mol. Biol. Cell. 7, 225–232.

    PubMed  CAS  Google Scholar 

  248. Gatti, M., Giansanti, M. G., and Bonaccorsi, S. (2000) Relationships between the central spindle and the contractile ring during cytokinesis in animal cells. Microsc. Res. Tech. 49, 202–208.

    PubMed  CAS  Google Scholar 

  249. Adams, R. R., Maiato, H., Earnshaw, W. C., and Carmena, M. (2001) Essential roles of Drosophila inner centromere protein (INCENP) and aurora B in histone H3 phos-phorylation, metaphase chromosome alignment, kinetochore disjunction, and chro-mosome segregation. J. CellBiol. 153, 865–880.

    CAS  Google Scholar 

  250. Nislow, C., Sellitto, C., Kuriyama, R., and McIntosh, J. R. (1990) A monoclonal antibody to a mitotic microtubule-associated protein blocks mitotic progression. J. Cell Biol. 111, 511–522.

    PubMed  CAS  Google Scholar 

  251. Nislow, C., Lombillo, V. A., Kuriyama, R., and McIntosh, J. R. (1992) A plus-end-directed motor enzyme that moves antiparallel microtubules in vitro localizes to the interzone of mitotic spindles. Nature 359, 543–547.

    PubMed  CAS  Google Scholar 

  252. Wheatley, S. P., Hinchcliffe, E. H., Glotzer, M., Hyman, A. A., Sluder, G., and Wang, Y. (1997) CDK1 inactivation regulates anaphase spindle dynamics and cytokinesis in vivo. J. Cell Biol. 138, 385–393.

    PubMed  CAS  Google Scholar 

  253. Mishima, M. and Mabuchi, I. (1996) Cell cycle-dependent phosphorylation of smooth muscle myosin light chain in sea urchin egg extracts. J. Biochem. (Tokyo) 119, 906–913.

    CAS  Google Scholar 

  254. Sellers, J. R. (1991) Regulation of cytoplasmic and smooth muscle myosin. Curr. Opin. Cell Biol. 3, 98–104.

    PubMed  CAS  Google Scholar 

  255. Yamakita, Y., Yamashiro, S., and Matsumura, F. (1994) In vivo phosphorylation of regulatory light chain of myosin II during mitosis of cultured cells. J. Cell Biol. 124, 129–137.

    PubMed  CAS  Google Scholar 

  256. Grafi, G. (1998) Cell cycle regulation of DNA replication: the endoreduplication perspective. Exp. Cell Res. 244, 372–378.

    PubMed  CAS  Google Scholar 

  257. Bloom, J. and Pagano, M. (2004) in The Cell Cycle, Chromosomes and Cancer (Deutscher, M. P., Black, S., Boehmer, P. E., et al., eds.), Miami Nature Biotechnology Winter Short Reports, Miami Beach, FLA, pp. 63–64.

    Google Scholar 

  258. Carrano, A. C., Eytan, E., Hershko, A., and Pagano, M. (1999) SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat. Cell Biol. 1, 193–199.

    PubMed  CAS  Google Scholar 

  259. Bornstein, G., Bloom, J., Sitry-Shevah, D., Nakayama, K., Pagano, M., and Hershko, A. (2003) Role of the SCFSkp2 ubiquitin ligase in the degradation ofp21Cip1 in S phase. J. Biol. Chem. 278, 25752–25757.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Harper, J.V., Brooks, G. (2005). The Mammalian Cell Cycle. In: Humphrey, T., Brooks, G. (eds) Cell Cycle Control. Methods in Molecular Biology™, vol 296. Humana Press. https://doi.org/10.1385/1-59259-857-9:113

Download citation

  • DOI: https://doi.org/10.1385/1-59259-857-9:113

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-144-8

  • Online ISBN: 978-1-59259-857-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics