The Xenopus Cell Cycle

An Overview
  • Anna Philpott
  • P. Renee Yew
Part of the Methods in Molecular Biology™ book series (MIMB, volume 296)

Abstract

Oocytes, eggs, and embryos from the frog Xenopus laevis have been an important model system for studying cell cycle regulation for several decades. First, progression through meiosis in the oocyte has been extensively investigated. Oocyte maturation has been shown to involve complex networks of signal transduction pathways, culminating in the cyclic activation and inactivation of maturation promoting factor (MPF), which is composed of cyclin B and cdc2. After fertilization, the early embryo undergoes rapid simplified cell cycles, which have been recapitulated in cell-free extracts of Xenopus eggs. Experimental manipulation of these extracts has given a wealth of biochemical information about the cell cycle, particularly concerning DNA replication and mitosis. Finally, cells of older embryos adopt a more somatictype cell cycle and have been used to study the balance between cell cycle and differentiation during development.

Key Words

Xenopus cell cycle oocyte egg, embryo DNA replication initiation meiosis mitosis midblastula transition MPF cdk cyclin APC/C ubiquitin proteolysis 

References

  1. 1.
    Newport, J. and Kirschner, M. (1982) A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription. Cell 30, 687–696.PubMedGoogle Scholar
  2. 2.
    Murray, A. W., Solomon, M. J., and Kirschner, M. W. (1989) The role of cyclin synthesis and degradation in the control of maturation promoting factor activity. Nature 339, 280–286.PubMedGoogle Scholar
  3. 3.
    Murray, A. W. and Kirschner, M. W. (1989) Cyclin synthesis drives the early embryonic cell cycle. Nature 339, 275–280.PubMedGoogle Scholar
  4. 4.
    Blow, J. J. and Laskey, R. A. (1986) Initiation of DNA replication in nuclei and purified DNA by a cell-free extract of Xenopus eggs. Cell 47, 577–587.PubMedGoogle Scholar
  5. 5.
    Nebreda, A. R. and Ferby, I. (2000) Regulation of the meiotic cell cycle in oocytes. Curr. Opin. Cell. Biol. 12, 666–675.PubMedGoogle Scholar
  6. 6.
    Tunquist, B. J. and Maller, J. L. (2003) Under arrest: cytostatic factor (CSF)-mediated metaphase arrest in vertebrate eggs. Genes Dev. 17, 683–710.PubMedGoogle Scholar
  7. 7.
    Masui, Y. and Markert, C. L. (1971) Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J. Exp. Zool. 177, 129–145.PubMedGoogle Scholar
  8. 8.
    Gautier, J., Norbury, C., Lohka, M., Nurse, P., and Maller, J. (1988) Purified maturation-promoting factor contains the product of a Xenopus homolog of the fission yeast cell cycle control gene cdc2+. Cell 54, 433–439.PubMedGoogle Scholar
  9. 9.
    Gautier, J. and Maller, J. L. (1991) Cyclin B in Xenopus oocytes: implications for the mechanism of pre-MPF activation. EMBO J. 10, 177–182.PubMedGoogle Scholar
  10. 10.
    Dunphy, W. G., Brizuela, L., Beach, D., and Newport, J. (1988) The Xenopus cdc2 protein is a component of MPF, a cytoplasmic regulator of mitosis. Cell 54, 423–431.PubMedGoogle Scholar
  11. 11.
    Lohka, M. J., Hayes, M. K., and Maller, J. L. (1988) Purification of maturation-promoting factor, an intracellular regulator of early mitotic events. Proc. Natl. Acad. Sci. USA 85, 3009–3013.PubMedGoogle Scholar
  12. 12.
    Ferrell, J. E., Jr. (1999) Xenopus oocyte maturation: new lessons from a good egg. Bioessays 21, 833–842.PubMedGoogle Scholar
  13. 13.
    Ferrell, J. E., Jr., Wu, M., Gerhart, J. C., and Martin, G. S. (1991) Cell cycle tyrosine phosphorylation of p34cdc2 and a micro tubule-associated protein kinase homolog in Xenopus oocytes and eggs. Mol. Cell Biol. 11, 1965–1971.PubMedGoogle Scholar
  14. 14.
    Jessus, C., Rime, H., Haccard, O., et al. (1991) Tyrosine phosphorylation of p34cdc2 and p42 during meiotic maturation of Xenopus oocyte. Antagonistic action of okadaic acid and 6-DMAP. Development 111, 813–820.PubMedGoogle Scholar
  15. 15.
    Posada, J., Sanghera, J., Pelech, S., Aebersold, R., and Cooper, J. A. (1991) Tyrosine phosphorylation and activation of homologous protein kinases during oocyte maturation and mitogenic activation of fibroblasts. Mol. Cell. Biol. 11, 2517–2528.PubMedGoogle Scholar
  16. 16.
    Mueller, P. R., Coleman, T. R., Kumagai, A., and Dunphy, W. G. (1995) Myt1: a mem-brane-associated inhibitory kinase that phosphorylates Cdc2 on both threonine-14 and tyrosine-15. Science 270, 86–90.PubMedGoogle Scholar
  17. 17.
    Strausfeld, U., Labbe, J. C., Fesquet, D., et al. (1991) Dephosphorylation and activation of a p34cdc2/cyclin B complex in vitro by human CDC25 protein. Nature 351, 242–245.PubMedGoogle Scholar
  18. 18.
    Gautier, J., Solomon, M. J., Booher, R. N., Bazan, J. F., and Kirschner, M. W. (1991) cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2. Cell 67, 197–211.PubMedGoogle Scholar
  19. 19.
    Nakajo, N., Oe, T., Uto, K., and Sagata, N. (1999) Involvement of Chk1 kinase in prophase I arrest of Xenopus oocytes. Dev. Biol. 207, 432–444.PubMedGoogle Scholar
  20. 20.
    Sagata, N., Daar, I., Oskarsson, M., Showalter, S. D., and Vande Woude, G. F. (1989) The product of the mos proto-oncogene as a candidate “initiator” for oocyte maturation. Science 245, 643–646.PubMedGoogle Scholar
  21. 21.
    Sagata, N., Oskarsson, M., Copeland, T., Brumbaugh, J., and Vande Woude, G. F. (1988) Function of c-mos proto-oncogene product in meiotic maturation in Xenopus oocytes. Nature 335, 519–525.PubMedGoogle Scholar
  22. 22.
    Yew, N., Mellini, M. L., and Vande Woude, G. F. (1992) Meiotic initiation by the mos protein in Xenopus. Nature 355, 649–652.PubMedGoogle Scholar
  23. 23.
    Gebauer, F., Xu, W., Cooper, G. M. & Richter, J. D. (1994) Translational control by cytoplasmic polyadenylation of c-mos mRNA is necessary for oocyte maturation in the mouse. EMBO J. 13, 5712.PubMedGoogle Scholar
  24. 24.
    Sheets, M. D., Wu, M., and Wickens, M. (1995) Polyadenylation of c-mos mRNA as a control point in Xenopus meiotic maturation. Nature 374, 511–516.PubMedGoogle Scholar
  25. 25.
    Sagata, N. (1997) What does Mos do in oocytes and somatic cells? Bioessays 19, 13–21.PubMedGoogle Scholar
  26. 26.
    Posada, J., Yew, N., Ahn, N. G., Vande Woude, G. F., and Cooper, J. A. (1993) Mos stimulates MAP kinase in Xenopus oocytes and activates a MAP kinase kinase in vitro. Mol. Cell. Biol. 13, 2546–2553.PubMedGoogle Scholar
  27. 27.
    Nebreda, A. R. and Hunt, T. (1993) The c-mos proto-oncogene protein kinase turns on and maintains the activity of MAP kinase, but not MPF, in cell-free extracts of Xenopus oocytes and eggs. EMBO J. 12, 1979–1986.PubMedGoogle Scholar
  28. 28.
    Shibuya, E. K. and Ruderman, J. V. (1993) Mos induces the in vitro activation of mito-gen-activated protein kinases in lysates of frog oocytes and mammalian somatic cells. Mol. Biol. Cell. 4, 781–790.PubMedGoogle Scholar
  29. 29.
    Gotoh, Y., Masuyama, N., Dell, K., Shirakabe, K., and Nishida, E. (1995) Initiation of Xenopus oocyte maturation by activation of the mitogen-activated protein kinase cascade. J. Biol. Chem. 270, 25898–25904.PubMedGoogle Scholar
  30. 30.
    Haccard, O., Lewellyn, A., Hartley, R. S., Erikson, E., and Maller, J. L. (1995) Induction of Xenopus oocyte meiotic maturation by MAP kinase. Dev. Biol. 168, 677–682.PubMedGoogle Scholar
  31. 31.
    Howard, E. L., Charlesworth, A., Welk, J., and MacNicol, A. M. (1999) The mitogen-activated protein kinase signaling pathway stimulates mos mRNA cytoplasmic polyadenylation during Xenopus oocyte maturation. Mol. Cell. Biol. 19, 1990–1999.PubMedGoogle Scholar
  32. 32.
    Matten, W. T., Copeland, T. D., Ahn, N. G., and Vande Woude, G. F. (1996) Positive feedback between MAP kinase and Mos during Xenopus oocyte maturation. Dev. Biol. 179, 485–492.PubMedGoogle Scholar
  33. 33.
    Nishizawa, M., Furuno, N., Okazaki, K., Tanaka, H., Ogawa, Y., and Sagata, N. (1993) Degradation of Mos by the N-terminal proline (Pro2)-dependent ubiquitin pathway on fertilization of Xenopus eggs: possible significance of natural selection for Pro2 in Mos. EMBO J. 12, 4021–4027.PubMedGoogle Scholar
  34. 34.
    Bhatt, R. R. and Ferrell, J. E., Jr. (1999) The protein kinase p90 rsk as an essential media-tor of cytostatic factor activity. Science 286, 1362–1365.PubMedGoogle Scholar
  35. 35.
    Gross, S. D., Schwab, M. S., Lewellyn, A. L., and Maller, J. L. (1999) Induction of metaphase arrest in cleaving Xenopus embryos by the protein kinase p90Rsk. Science 286, 1365–1367.PubMedGoogle Scholar
  36. 36.
    Gross, S. D., Schwab, M. S., Taieb, F. E., Lewellyn, A. L., Qian, Y. W., and Maller, J. L. (2000) The critical role of the MAP kinase pathway in meiosis II in Xenopus oocytes is mediated by p90(Rsk) Curr. Biol. 10, 430–438.PubMedGoogle Scholar
  37. 37.
    Schwab, M. S., Roberts, B. T., Gross, S. D., et al. (2001) Bub1 is activated by the protein kinase p90(Rsk) during Xenopus oocyte maturation. Curr. Biol. 11, 141–150.PubMedGoogle Scholar
  38. 38.
    Palmer, A., Gavin, A. C., and Nebreda, A. R. (1998) A link between MAP kinase and p34(cdc2)/cyclin B during oocyte maturation: p90(rsk) phosphorylates and inactivates the p34(cdc2) inhibitory kinase Myt1. EMBO J. 17, 5037–5047.PubMedGoogle Scholar
  39. 39.
    Kumagai, A. and Dunphy, W. G. (1996) Purification and molecular cloning of Plx1, a Cdc25-regulatory kinase from Xenopus egg extracts. Science 273, 1377–1380.PubMedGoogle Scholar
  40. 40.
    Takizawa, C. G. and Morgan, D. O. (2000) Control of mitosis by changes in the subcellular location of cyclin-B1-Cdk1 and Cdc25C. Curr. Opin. Cell. Biol. 12, 658–665.PubMedGoogle Scholar
  41. 41.
    Nebreda, A. R., Gannon, J. V., and Hunt, T. (1995) Newly synthesized protein(s) must associate with p34cdc2 to activate MAP kinase and MPF during progesterone-induced maturation of Xenopus oocytes. EMBO J. 14, 5597–5607.PubMedGoogle Scholar
  42. 42.
    Taieb, F. E., Gross, S. D., Lewellyn, A. L., and Maller, J. L. (2001) Activation of the anaphase-promoting complex and degradation of cyclin B is not required for progression from meiosis I to II in Xenopus oocytes. Curr. Biol. 11, 508–513.PubMedGoogle Scholar
  43. 43.
    Reimann, J. D. and Jackson, P. K. (2002) Emi1 is required for cytostatic factor arrest in vertebrate eggs. Nature 416, 850–854.PubMedGoogle Scholar
  44. 44.
    Watanabe, N., Vande Woude, G. F., Ikawa, Y., and Sagata, N. (1989) Specific proteolysis of the c-mos proto-oncogene product by calpain on fertilization of Xenopus eggs. Nature 342, 505–511.PubMedGoogle Scholar
  45. 45.
    Reimann, J. D., Freed, E., Hsu, J. Y., Kramer, E. R., Peters, J. M., and Jackson, P. K. (2001) Emi1 is a mitotic regulator that interacts with Cdc20 and inhibits the anaphase promoting complex. Cell 105, 645–655.PubMedGoogle Scholar
  46. 46.
    Philpott, A., Leno, G. H., and Laskey, R. A. (1991) Sperm decondensation in Xenopus egg cytoplasm is mediated by nucleoplasmin. Cell 65, 569–578.PubMedGoogle Scholar
  47. 47.
    Lohka, M. J. and Masui, Y. (1984) Roles of cytosol and cytoplasmic particles in nuclear envelope assembly and sperm pronuclear formation in cell-free preparations from am-phibian eggs. J. Cell. Biol. 98, 1222–1230.PubMedGoogle Scholar
  48. 48.
    Coverley, D., Laman, H., and Laskey, R. A. (2002) Distinct roles for cyclins E and A during DNA replication complex assembly and activation. Nat. Cell. Biol. 4, 523–528.PubMedGoogle Scholar
  49. 49.
    Laskey, R. A. and Harland, R. M. (1980) Regulated replication of DNA microinjected into eggs of Xenopus laevis. Cell 21, 761–771.PubMedGoogle Scholar
  50. 50.
    Tada, S. and Blow, J. J. (1998) The replication licensing system. Biol. Chem. 379, 941–949.PubMedGoogle Scholar
  51. 51.
    Coverley, D. and Laskey, R. A. (1994) Regulation of eukaryotic DNA replication. Annu. Rev. Biochem. 63, 745–776.PubMedGoogle Scholar
  52. 52.
    Rowles, A., Chong, J. P., Brown, L., Howell, M., Evan, G. I. & Blow, J. J. (1996) Inter-action between the origin recognition complex and the replication licensing system in Xenopus. Cell 87, 287–296.PubMedGoogle Scholar
  53. 53.
    Diffley, J. F. (1998) Replication conrol: choreographing replication origins. Curr. Biol. 8, R771–R773.PubMedGoogle Scholar
  54. 54.
    Newlon, C. S. (1997) Putting it all together: building a prereplicative complex. Cell 91, 717–720.PubMedGoogle Scholar
  55. 55.
    Carpenter, P. B., Mueller, P. R., and Dunphy, W. G. (1996) Role for a Xenopus Orc2-related protein in controlling DNA replication. Nature 379, 357–360.PubMedGoogle Scholar
  56. 56.
    Coleman, T. R., Carpenter, P. B., and Dunphy, W. G. (1996) TheXenopus Cdc6 protein is essential for the initiation of a single round of DNA replication in cell-free extracts. Cell 87, 53–63.PubMedGoogle Scholar
  57. 57.
    Kubota, Y., Mimura, S., Nishimoto, S., Takisawa, H., and Nojima, H. (1995) Identification of the yeast MCM3-related protein as a component of Xenopus DNA replication licensing factor. Cell 81, 601–609.PubMedGoogle Scholar
  58. 58.
    Chong, J. P., Mahbubani, H. M., Khoo, C. Y., and Blow, J. J. (1995) Purification of an MCM-containing complex as a component of the DNA replication licensing system. Nature 375, 418–421.PubMedGoogle Scholar
  59. 59.
    Madine, M. A., Khoo, C. Y., Mills, A. D., and Laskey, R. A. (1995) MCM3 complex required for cell cycle regulation of DNA replication in vertebrate cells. Nature 375, 421–424.PubMedGoogle Scholar
  60. 60.
    Leatherwood, J. (1998) Emerging mechanisms of eukaryotic DNA replication initiation. Curr. Opin. Cell. Biol. 10, 742–748.PubMedGoogle Scholar
  61. 61.
    Romanowski, P., Madine, M. A., and Laskey, R. A. (1996) XMCM7, a novel member of the Xenopus MCM family, interacts with XMCM3 and colocalizes with it throughout replication. Proc. Natl. Acad. Sci. USA 93, 10189–10194.PubMedGoogle Scholar
  62. 62.
    Romanowski, P., Madine, M. A., Rowles, A., Blow, J. J., and Laskey, R. A. (1996) The Xenopus origin recognition complex is essential for DNA replication and MCM binding to chromatin. Curr. Biol. 6, 1416–1425.PubMedGoogle Scholar
  63. 63.
    Tada, S., Li, A., Maiorano, D., Mechali, M., and Blow, J. J. (2001) Repression of origin assembly in metaphase depends on inhibition of RLF-B/Cdt1 by geminin. Nat. Cell. Biol. 3, 107–113.PubMedGoogle Scholar
  64. 64.
    Wohlschlegel, J. A., Dwyer, B. T., Dhar, S. K., Cvetic, C., Walter, J. C., and Dutta, A. (2000) Inhibition of eukaryotic DNA replication by geminin binding to Cdt1. Science 290, 2309–2312.PubMedGoogle Scholar
  65. 65.
    Lei, M. and Tye, B. K. (2001) Initiating DNA synthesis: from recruiting to activating the MCM complex. J. Cell. Sci. 114, 1447–1454.PubMedGoogle Scholar
  66. 66.
    Jackson, P. K., Chevalier, S., Philippe, M., and Kirschner, M. W. (1995) Early events in DNA replication require cyclin E and are blocked by p21CIP1. J. Cell. Biol. 130, 755–769.PubMedGoogle Scholar
  67. 67.
    Walter, J. and Newport, J. (2000) Initiation of eukaryotic DNA replication: origin unwinding and sequential chromatin association of Cdc45, RPA, and DNA polymerase alpha. Mol. Cell. 5, 617–627.PubMedGoogle Scholar
  68. 68.
    Sclafani, R. A. (1998) Chromosomes in the Rocky Mountains. Yeast chromosome struc-ture, replication and segregation, Snowmass, CO, USA, 8-13 August 1998. Trends Genet. 14, 441–442.PubMedGoogle Scholar
  69. 69.
    Jackson, A. L., Pahl, P. M., Harrison, K., Rosamond, J., and Sclafani, R. A. (1993) Cell cycle regulation of the yeast Cdc7 protein kinase by association with the Dbf4 protein. Mol. Cell. Biol. 13, 2899–908.PubMedGoogle Scholar
  70. 70.
    Mimura, S. and Takisawa, H. (1998) Xenopus Cdc45-dependent loading of DNA polymerase alpha onto chromatin under the control of S-phase Cdk. EMBO J. 17, 5699–707.PubMedGoogle Scholar
  71. 70.
    Mimura, S. and Takisawa, H. (1998) Xenopus Cdc45-dependent loading of DNA polymerase alpha onto chromatin under the control of S-phase Cdk. EMBO J. 17, 5699–707.PubMedGoogle Scholar
  72. 71.
    Wohlschlegel, J. A., Dhar, S. K., Prokhorova, T. A., Dutta, A., and Walter, J. C. (2002) Xenopus Mcm10 binds to origins of DNA replication after Mcm2-7 and stimulates origin binding of Cdc45. Mol. Cell. 9, 233–240.PubMedGoogle Scholar
  73. 72.
    Walter, J. C. (2000) Evidence for sequential action of cdc7 and cdk2 protein kinases during initiation of DNA replication in Xenopus egg extracts. J. Biol. Chem. 275, 39773–39778.PubMedGoogle Scholar
  74. 73.
    Hubscher, U., Maga, G., and Spadari, S. (2002) Eukaryotic DNA polymerases. Annu. Rev. Biochem. 71, 133–163.PubMedGoogle Scholar
  75. 74.
    Pagano, M., Pepperkok, R., Verde, F., Ansorge, W., and Draetta, G. (1992) Cyclin A is required at two points in the human cell cycle. EMBO J. 11, 961–971.PubMedGoogle Scholar
  76. 75.
    Girard, F., Strausfeld, U., Fernandez, A., and Lamb, N. J. (1991) Cyclin A is required for the onset of DNA replication in mammalian fibroblasts. Cell 67, 1169–1179.PubMedGoogle Scholar
  77. 76.
    Fotedar, A., Cannella, D., Fitzgerald, P., et al. (1996) Role for cyclin A-dependent kinase in DNA replication in human S phase cell extracts. J. Biol. Chem. 271, 31627–31637.PubMedGoogle Scholar
  78. 77.
    Waga, S. and Stillman, B. (1998) The DNA replication fork in eukaryotic cells. Annu. Rev. Biochem. 67, 721–751.PubMedGoogle Scholar
  79. 78.
    Bogan, J. A., Natale, D. A., and Depamphilis, M. L. (2000) Initiation of eukaryotic DNA replication: conservative or liberal? J. Cell. Physiol. 184, 139–150.PubMedGoogle Scholar
  80. 79.
    De Pamphilis, M. L. (2000) Review: nuclear structure and DNA replication. J. Struct. Biol. 129, 186–197.Google Scholar
  81. 80.
    Fujita, M. (1999) Cell cycle regulation of DNA replication initiation proteins in mamma-lian cells. Front. Biosci. 4, D816–D823.PubMedGoogle Scholar
  82. 81.
    Waga, S. and Stillman, B. (1994) Anatomy of a DNA replication fork revealed by recon-stitution of SV40 DNA replication in vitro. Nature 369, 207–212.PubMedGoogle Scholar
  83. 82.
    Blow, J. J. and Tada, S. (2000) Cell cycle. A new check on issuing the licence. [letter; comment]. Nature 404, 560–561.PubMedGoogle Scholar
  84. 83.
    McGarry, T. J. and Kirschner, M. W. (1998) Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 93, 1043–1053.PubMedGoogle Scholar
  85. 84.
    Madine, M. & Laskey, R. (2001) Geminin bans replication licence. Nat. Cell. Biol. 3, E49–E50.PubMedGoogle Scholar
  86. 85.
    Graham, C. F. and Morgan, R. W. (1966) Changes in the cell cycle during early amphibian development. Dev. Biol. 14, 436–460.Google Scholar
  87. 86.
    King, R. W., Jackson, P. K., and Kirschner, M. W. (1994) Mitosis in transition [see com-ments]. Cell 79, 563–571.PubMedGoogle Scholar
  88. 87.
    Russo, A. A., Jeffrey, P. D., Patten, A. K., Massague, J., and Pavletich, N. P. (1996) Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex [see comments]. Nature 382, 325–331.PubMedGoogle Scholar
  89. 88.
    Fesquet, D., Labbe, J. C., Derancourt, J., et al. (1993) The Mo15 gene encodes the catalytic subunit of a protein-kinase that activates Cdc2 and other cyclin-dependent kinases (Cdks) through phosphorylation of thr161 and its homologs. EMBO J. 12, 3111–3121.PubMedGoogle Scholar
  90. 89.
    Solomon, M. J. (1994) The function(s) of CAK, the p34cdc2-activating kinase. Trends Biochem. Sci. 19, 496–500.PubMedGoogle Scholar
  91. 90.
    Mueller, P. R., Coleman, T. R., and Dunphy, W. G. (1995) Cell cycle regulation of a Xenopus Wee1-like kinase. Mol. Biol. Cell. 6, 119–134.PubMedGoogle Scholar
  92. 91.
    Kumagai, A. and Dunphy, W. G. (1991) The cdc25 protein controls tyrosine dephospho-rylation of the cdc2 protein in a cell-free system. Cell 64, 903–914.PubMedGoogle Scholar
  93. 92.
    Dunphy, W. G. and Kumagai, A. (1991) The cdc25 protein contains an intrinsic phos-phatase activity. Cell 67, 189–196.PubMedGoogle Scholar
  94. 93.
    Galaktionov, K. and Beach, D. (1991) Specific activation of cdc25 tyrosine phosphatases by B-type cyclins: evidence for multiple roles of mitotic cyclins. Cell 67, 1181–1194.PubMedGoogle Scholar
  95. 94.
    Kumagai, A. and Dunphy, W. G. (1992) Regulation of the cdc25 protein during the cell cycle in Xenopus extracts. Cell 70, 139–151.PubMedGoogle Scholar
  96. 95.
    Millar, J. B. and Russell, P. (1992) The cdc25 M-phase inducer: an unconventional pro-tein phosphatase. Cell 68, 407–410.PubMedGoogle Scholar
  97. 96.
    Dasso, M. & Newport, J. W. (1990) Completion of DNA replication is monitored by a feedback system that controls the initiation of mitosis in vitro: studies in Xenopus. Cell 61, 811–823.Google Scholar
  98. 97.
    Kumagai, A., Guo, Z., Emami, K. H., Wang, S. X., and Dunphy, W. G. (1998) TheXenopus Chk1 protein kinase mediates a caffeine-sensitive pathway of checkpoint control in cell-free extracts. J. Cell. Biol. 142, 1559–1569.PubMedGoogle Scholar
  99. 98.
    Kumagai, A. and Dunphy, W. G. (1999) Binding of 14-3-3 proteins and nuclear export control the intracellular localization of the mitotic inducer Cdc25. Genes Dev. 13, 1067–1072.PubMedGoogle Scholar
  100. 99.
    Kumagai, A., Yakowec, P. S., and Dunphy, W. G. (1998) 14-3-3 proteins act as negative regulators of the mitotic inducer Cdc25 in Xenopus egg extracts. Mol. Biol. Cell. 9, 345–354.PubMedGoogle Scholar
  101. 100.
    Nigg, E. A., Blangy, A. & Lane, H. A. (1996) Dynamic changes in nuclear architecture during mitosis: on the role of protein phosphorylation in spindle assembly and chromosome segregation. Exp. Cell. Res. 229, 174–180.PubMedGoogle Scholar
  102. 101.
    Nigg, E. A. (1991) The substrates of the cdc2 kinase. Semin. Cell. Biol. 2, 261–270.PubMedGoogle Scholar
  103. 102.
    Stukenberg, P. T., Lustig, K. D., McGarry, T. J., King, R. W., Kuang, J., and Kirschner, M. W. (1997) Systematic identification of mitotic phosphoproteins. Curr. Biol. 7, 338–348.PubMedGoogle Scholar
  104. 103.
    King, R. W., Deshaies, R. J., Peters, J. M., and Kirschner, M. W. (1996) How proteolysis drives the cell cycle. Science 274, 1652–1659.PubMedGoogle Scholar
  105. 104.
    Hershko, A. and Ciechanover, A. (1998) The ubiquitin system. Annu. Rev. Biochem. 67, 425–479.PubMedGoogle Scholar
  106. 105.
    Ciechanover, A., Orian, A., and Schwartz, A. L. (2000) Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessays 22, 442–451.PubMedGoogle Scholar
  107. 106.
    Kornitzer, D. and Ciechanover, A. (2000) Modes of regulation of ubiquitin-mediated pro-tein degradation. J. Cell. Physiol. 182, 1–111.PubMedGoogle Scholar
  108. 107.
    King, R. W., Peters, J. M., Tugendreich, S., Rolfe, M., Hieter, P., and Kirschner, M. W. (1995) A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific con-jugation of ubiquitin to cyclin B. Cell 81, 279–288.PubMedGoogle Scholar
  109. 108.
    Zou, H., McGarry, T. J., Bernal, T., and Kirschner, M. W. (1999) Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumori-genesis. Science 285, 418–422.PubMedGoogle Scholar
  110. 109.
    Holloway, S. L., Glotzer, M., King, R. W., and Murray, A. W. (1993) Anaphase is initiated by proteolysis rather than by the inactivation of maturation-promoting factor. Cell 73, 1393–1402.PubMedGoogle Scholar
  111. 110.
    Yu, H., Peters, J. M., King, R. W., Page, A. M., Hieter, P., and Kirschner, M. W. (1998) Identification of a cullin homology region in a subunit of the anaphase-promoting complex. Science 279, 1219–1222.PubMedGoogle Scholar
  112. 111.
    Peters, J. M. (1999) Subunits and substrates of the anaphase-promoting complex. Exp. Cell. Res. 248, 339–349.PubMedGoogle Scholar
  113. 112.
    Zachariae, W. and Nasmyth, K. (1999) Whose end is destruction: cell division and the anaphase-promoting complex. Genes Dev. 13, 2039–2058.PubMedGoogle Scholar
  114. 113.
    Pfleger, C. M. and Kirschner, M. W. (2000) The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1. Genes Dev. 14, 655–665.PubMedGoogle Scholar
  115. 114.
    Fang, G., Yu, H., and Kirschner, M. W. (1998) Direct binding of CDC20 protein family members activates the anaphase-promoting complex in mitosis and G1. Mol. Cell. 2, 163–171.PubMedGoogle Scholar
  116. 115.
    Chen, R. H., Waters, J. C., Salmon, E. D., and Murray, A. W. (1996) Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores. Science 274, 242–246.PubMedGoogle Scholar
  117. 116.
    Howe, J. A., Howell, M., Hunt, T., and Newport, J. W. (1995) Identification of a developmental timer regulating the stability of embryonic cyclin A and a new somatic A-type cyclin at gastrulation. Genes Dev. 9, 1164–1176.PubMedGoogle Scholar
  118. 117.
    King, R. W., Glotzer, M., and Kirschner, M. W. (1996) Mutagenic analysis of the destruction signal of mitotic cyclins and structural characterization of ubiquitinated intermediates. Mol. Biol. Cell. 7, 1343–1357.PubMedGoogle Scholar
  119. 118.
    Sudakin, V., Ganoth, D., Dahan, A., et al. (1995) The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol. Biol. Cell. 6, 185–197.PubMedGoogle Scholar
  120. 119.
    Hunt, T., Luca, F. C., and Ruderman, J. V. (1992) The requirements for protein synthesis and degradation, and the control of destruction of cyclins A and B in the meiotic and mitotic cell cycles of the clam embryo. J. Cell. Biol. 116, 707–724.PubMedGoogle Scholar
  121. 120.
    Walker, D. H. and Maller, J. L. (1991) Role for cyclin A in the dependence of mitosis on completion of DNA replication. Nature 354, 314–317.PubMedGoogle Scholar
  122. 121.
    Newport, J. & Kirschner, M. (1982) A major developmental transition in early Xenopusembryos: I. Characterization and timing of cellular changes at the midblastula stage. Cell 30, 675–686.PubMedGoogle Scholar
  123. 122.
    Clarke, P. R., Leiss, D., Pagano, M., and Karsenti, E. (1992) Cyclin A-and cyclin Bdependent protein kinases are regulated by different mechanisms in Xenopus egg ex-tracts. EMBO J. 11, 1751–1761.PubMedGoogle Scholar
  124. 123.
    Rempel, R. E., Sleight, S. B., and Maller, J. L. (1995) Maternal Xenopus Cdk2-cyclin E complexes function during meiotic and early embryonic cell cycles that lack a G1 phase. J. Biol. Chem. 270, 6843–6855.PubMedGoogle Scholar
  125. 124.
    Hartley, R. S., Rempel, R. E., and Maller, J. L. (1996) In vivo regulation of the early embryonic cell cycle in Xenopus. Dev. Biol. 173, 408–419.Google Scholar
  126. 125.
    Hensey, C. and Gautier, J. (1997) A developmental timer that regulates apoptosis at the onset of gastrulation. Mech. Dev. 69, 183–195.PubMedGoogle Scholar
  127. 126.
    Stack, J. H. and Newport, J. W. (1997) Developmentally regulated activation of apoptosis early in Xenopus gastrulation results in cyclin A degradation during interphase of the cell cycle. Development 124, 3185–3195.PubMedGoogle Scholar
  128. 127.
    Su, J. Y., Rempel, R. E., Erikson, E., and Maller, J. L. (1995) Cloning and characterization of the Xenopus cyclin-dependent kinase inhibitor p27XIC1. Proc. Natl. Acad. Sci. USA 92, 10187–10191.PubMedGoogle Scholar
  129. 128.
    Shou, W. and Dunphy, W. G. (1996) Cell cycle control by Xenopus p28Kix1, a develop-mentally regulated inhibitor of cyclin-dependent kinases. Mol. Biol. Cell. 7, 457–469.PubMedGoogle Scholar
  130. 129.
    Chuang, L. C. and Yew, P. R. (2001) Regulation of nuclear transport and degradation of theXenopus cyclin-dependent kinase inhibitor, p27Xic1. J. Biol. Chem. 276, 1610–1617.PubMedGoogle Scholar
  131. 130.
    You, Z., Harvey, K., Kong, L., and Newport, J. (2002) Xic1 degradation in Xenopus egg extracts is coupled to initiation of DNA replication. Genes Dev. 16, 1182–1194.PubMedGoogle Scholar
  132. 131.
    Vernon, A. E. and Philpott, A. (2003) The developmental expression of cell cycle regulators in Xenopus laevis. Gene. Expr. Patterns 3, 179–192.Google Scholar
  133. 132.
    Destree, O. H., Lam, K. T., Peterson-Maduro, L. J., et al. (1992) Structure and expression of the Xenopus retinoblastoma gene. Dev. Biol. 153, 141–149.PubMedGoogle Scholar
  134. 133.
    Philpott, A. and Friend, S. H. (1994) E2F and its developmental regulation in Xenopus laevis. Mol. Cell. Biol. 14, 5000–5009.PubMedGoogle Scholar
  135. 134.
    Suzuki, A. and Hemmati-Brivanlou, A. (2000) Xenopus embryonic E2F is required for the formation of ventral and posterior cell fates during early embryogenesis. Mol. Cell. 5, 217–229.PubMedGoogle Scholar
  136. 135.
    Ohnuma, S., Philpott, A., Wang, K., Holt, C. E., and Harris, W. A. (1999) p27Xic1, a Cdk inhibitor, promotes the determination of glial cells in Xenopus retina. Cell 99, 499–510.PubMedGoogle Scholar
  137. 136.
    Vernon, A. E. and Philpott, A. (2003) A single cdk inhibitor, p27Xic1, functions beyond cell cycle regulation to promote muscle differentiation in Xenopus. Development 130, 71–83.Google Scholar
  138. 137.
    Vernon, A. E., Devine, C., and Philpott, A. (2003) The cdk inhibitor p27Xic1 is required for differentiation of primary neurones in Xenopus. Development 130, 85–92.Google Scholar
  139. 138.
    Cremisi, F., Philpott, A., and Ohnuma, S. (2003) Cell cycle and cell fate interactions in neural development. Curr. Opin. Neurobiol. 13, 26–33.PubMedGoogle Scholar
  140. 139.
    Ohnuma, S., Philpott, A., and Harris, W. A. (2001) Cell cycle and cell fate in the nervous system. Curr. Opin. Neurobiol. 11, 66–73.PubMedGoogle Scholar
  141. 140.
    Kroll, K. L., Salic, A. N., Evans, L. M., and Kirschner, M. W. (1998) Geminin, a neuralizing molecule that demarcates the future neural plate at the onset of gastrulation. Development 125, 3247–3258.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Anna Philpott
  • P. Renee Yew

There are no affiliations available

Personalised recommendations