Transdermal Delivery of Antisense Oligonucletoides

  • Rhonda M. Brand
  • Patrick L. Iversen
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 106)

Abstract

Transdermal delivery is an appealing method of introducing therapeutic agents because it allows medication to bypass the gastrointestinal (GI) tract. This reduces degradation by the acid and proteolytic enzymes in the gastric environment (1), as well hepatic first-pass elimination (2) and incomplete absorption due to GI motility disorders (3). Transdermal delivery also provides steady-state drug levels and improves patient compliance because of its extended duration. Another beneficial use of this technique is the treatment of skin disorders using local delivery of chemicals. Careful chemical design and formulation can modulate whether topically applied medications will reside within the skin or penetrate transdermally to achieve therapeutic systemic levels. The disadvantages of transdermal delivery include limited numbers of potential drug candidates due to their inability to penetrate the skin in sufficient levels, and potential irritation at the application site (4).

Keywords

Surfactant Oligomer Fluorescein Thymidine Sulfoxide 

References

  1. 1.
    Guy, R. H. and Hadgraft, J. J. (1987) Transdermal drug delivery: a perspective. J. Control. Release 4, 237–251.CrossRefGoogle Scholar
  2. 2.
    Pitt, C. G. (1990) The controlled parenteral delivery of polypeptides and proteins. Int. J. Pharm. 59, 173–196.CrossRefGoogle Scholar
  3. 3.
    Brand, R. M. and Quigley, E. M. M. (1997) Transdermal delivery of erythromycin lactobionate—implications for the therapy of gastroparesis. Aliment. Pharmacol. Ther. 11, 589–592.PubMedCrossRefGoogle Scholar
  4. 4.
    Hogan, D. J. and Cottan, J. (1996) Dermatological aspects of transdermal drug delivery systems, in Dermatotoxicology (Marzulli, F. N. and Maibaich, H. I., eds.), Taylor & Francis, Washington, DC, pp. 75–86.Google Scholar
  5. 5.
    Monteiro-Riviere, N. A. (1996) Anatomical factors affecting barrier function, in Dermatotoxicology (Marzulli, F. N. and Maibach, H. I., eds.), Taylor & Francis, Washington, DC, pp. 3–19.Google Scholar
  6. 6.
    Walters, K. A. (1989) Penetration enhancers and their use in transdermal therapeutic systems, in Transdermal Drug Delivery, (Hadgraft, J. and Guy, R. H., eds.), Marcel Dekker, New York, pp. 197–247.Google Scholar
  7. 7.
    Elias, P. M. (1983) Epidermal lipids, barrier function, and desquamation. J. Invest. Dermatol. 86, 187–190.Google Scholar
  8. 8.
    Wertz, P. W. and Downing, D. T. (1989) Stratum corneum: biological and biochemical considerations, in Transdermal Drug Delivery (Hadgraft, J. and Guy, R.H., eds.), Marcel Dekker, New York, pp. 1–22.Google Scholar
  9. 9.
    Junginger, H. E., Bodde, H. E., and de Haan, F. H. N. (1990) Visualization of drug transport across human skin and the influence of penetration enhancers, in Drug Permeation Enhancement–Theory and Applications (Hsieh, D. S., ed.) Marcel Dekker, Malvern, PA, pp. 59–89.Google Scholar
  10. 10.
    Cullander, C. and Guy, R. H. (1992) Routes of Delivery: case studies (6). Transdermal delivery of peptides and proteins. Adv. Drug Deliv. Rev. 8, 291–329.CrossRefGoogle Scholar
  11. 11.
    Fartasch, M. (1996) The nature of the epidermal barrier: structural aspects. Adv. Drug Deliv. Rev. 18, 273–282.CrossRefGoogle Scholar
  12. 12.
    Magee, F. P. (1996) Reaffirming the complexity of transdermal transport, in Dermatotoxicology (Marzulli, F. N. and Maibach, H. I., eds.), Taylor & Francis, Washington, DC, pp. 61–74.Google Scholar
  13. ai]13.
    Guy, R. H. and Hadgraft, J. (1989) Selection of drug candidates for transdermal drug delivery, in Transdermal Drug Delivery (Hadgraft, J. and Guy, R. H., eds.), Marcel Dekker, New York, pp. 59–81.Google Scholar
  14. 14.
    Tyle, P. (1986) Iontophoretic devices for drug delivery. Pharm. Res. 3, 318–326.CrossRefGoogle Scholar
  15. 15.
    Singh, P. and Maibach, H. I. (1996) Iontophoresis: an alternative to the use of carriers in cutaneous drug delivery. Adv. Drug Deliv. Rev. 18, 379–394.CrossRefGoogle Scholar
  16. 16.
    Ledger, P. W. (1992) Skin biological issues in electrically enhanced transdermal delivery. Adv. Drug Deliv. Rev. 9, 289–307.CrossRefGoogle Scholar
  17. 17.
    Rosendal, T. (1942) Studies on the conducting properties of the humans skin to direct current. Acta. Physiol. Scand. 5, 130–130.CrossRefGoogle Scholar
  18. 18.
    Kim, A., Green, P. G., Rao, G, and Guy, R. H. (1993) Convective solvent flow across the skin during iontophoresis. Pharm. Res. 10, 1315–1320.PubMedCrossRefGoogle Scholar
  19. 19.
    Pikal, M. J. and Shah, S. (1990) Transport mechanisms in iontophoresis. III. An experimental study of the contributions of electroosmotic flow and permeability change in transport of low and high molecular weight solutes. Pharm. Res. 7, 222–229.PubMedCrossRefGoogle Scholar
  20. 20.
    Brand, R. M. and Iversen, P. I. (1996) Iontophoretic delivery of a telomeric oligonucleotide. Pharm. Res. 13, 851–854.PubMedCrossRefGoogle Scholar
  21. 21.
    Oldenburg, K. R., Vo, K. T., Smith, G A., and Selick, H. E. (1995) Iontophoretic delivery of oligonucleotides across full thickness hairless mouse skin. J. Pharm. Sci. 84, 915–921.PubMedCrossRefGoogle Scholar
  22. 22.
    Brand, R. M., Wahl, A., and Iversen, P. L. (1997) Effects of size and sequence on the iontophoretic delivery of oligonucleotides. J. Pharm. Sci. 87, 49–52.CrossRefGoogle Scholar
  23. 23.
    Brand, R. M., Hannah, T. L., Norris, J., and Iversen, P. L. (2001) Transdermal delivery of antisense oligonucleotides can induce changes in gene expression in vivo. Antisense Nucleic Acid Drug Dev. 11, 1–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Banga, A. K. and Prausnitz, M. R. (1998) Assessing the potential of skin electroporation for the delivery of protein-and gene-based drugs. TIBTECH 16, 408–412.Google Scholar
  25. 25.
    Banga, A. K., Bose, S., and Ghosh, T. K. (1999) Iontophoresis and electroporation: comparisons and contrasts. Int. J. Pharm. 179, 1–19.PubMedCrossRefGoogle Scholar
  26. 26.
    Zewert, T. E., Pliquett, U. F., Langer, R., and Weaver, J. C. (1997) Transdermal transport of DNA amtosense oligonucleotides by electroporation. Biochem. Biophys. Res. Commun. 212, 286–292.CrossRefGoogle Scholar
  27. 27.
    Regnier, V., Tahiri, A., Andre, N., Lemaitre, M., Le Doan, T., and Preat, V. (2000) Electroporation-mediated delivery of 3′-protected phosphodiester oligodeoxynucleotides to the skin. J. Control Release 67, 337–346.PubMedCrossRefGoogle Scholar
  28. 28.
    Regnier, V., LeDoan, T., and Preat, V. (1998) Parameters controlling topical delivery of oligonucleotides by electroporation. J. Drug Target 5, 275–289.PubMedCrossRefGoogle Scholar
  29. 29.
    Regnier, V., De Morre, N., Jadoul, A., and Preat, V. (1999) Mechanisms of a phosphorothioate oligonucleotide delivery by skin electroporation. Int. J. Pharm. 184, 147–156.PubMedCrossRefGoogle Scholar
  30. 30.
    McAllister, D. V., Allen, M. G., and Prausnitz, M. R. (2000) Microfabricated microneedles for gene and drug delivery. Ann. Rev. Biomed. Eng. 2, 289–313.CrossRefGoogle Scholar
  31. 31.
    Lin, W., Cormier, M., Samiee, A., et al. (2001) Transdermal delivery of antisense oligonucleotides with microprojection patch (Macroflux) technology. Pharm. Res. 18, 1789–1793.PubMedCrossRefGoogle Scholar
  32. 32.
    Hadgraft, J., Walters, K. A., and Guy, R. H. (1992) Epidermal lipids and topical drug delivery. Semin. Dermatol. 11, 139–144.PubMedGoogle Scholar
  33. 33.
    Yarosh, D. and Klein, J. (1996) The role of liposomal delivery incutaneous DNA repair. Adv. Drug Deliv. Rev. 18, 325–333.CrossRefGoogle Scholar
  34. 34.
    Cevc, G., Blume, G., Schatzlein, A., Gebauer, D., and Paul, A. (1996) The skin: a pathway for systemic treatment with patches and lipid-based agent carriers. Adv. Drug Deliv. Rev. 18, 349–378.CrossRefGoogle Scholar
  35. 35.
    Touitou, E., Dayan, N., Bergelson, L., Godin, B., and Eliaz, M. (2000) Ethosomes—novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J. Control Release 65, 403–418.PubMedCrossRefGoogle Scholar
  36. 36.
    Mitragorti, S. (2000) Synergystic effect of enhancers for transdermal drug delivery. Pharm. Res. 17, 1354–1359.CrossRefGoogle Scholar
  37. 37.
    Nolen III, H. W., Catz, P., and Friend, D. R. (1994) Percutaneous penetration of methyl phosphonate antisense oligonucleotides. Int. J. Pharm. 107, 169–177.CrossRefGoogle Scholar
  38. 38.
    Pannier A. K., Arora, V., Iversen, P. L., and Brand, R. M. (2004) Transdermal delivery of phosphorodiamidate morpholino oligomers across hairless mouse skin. Int. J. Pharm. 275, 217–226.PubMedCrossRefGoogle Scholar
  39. 39.
    Vlassov, V. V., Karamyshev, V. N., and Yakubov, L. A. (1993) Penetration of oligonucleotides into mouse organism through mucosa and skin. FEBS Lett. 327, 271–274.PubMedCrossRefGoogle Scholar
  40. 40.
    Franz, T. J. (1975) Percutaneous absorption on the relevance of in vitro data. J. Invest. Dermatol. 64, 190–195.PubMedCrossRefGoogle Scholar
  41. 41.
    Delgado-Charro, M. B. and Guy, R. H. (1995) Iontophoretic delivery of nafarelin across the skin. Int. J. Pharm. 117, 165–172.CrossRefGoogle Scholar
  42. 42.
    Bronaugh, R. L. and Stewart, R. F. (1985) Methods for in vitro percutaneous absorption studies IV: the flow-through diffusion cell. J. Pharm. Sci. 74, 64–67.PubMedCrossRefGoogle Scholar
  43. 43.
    Glikfeld, P., Cullander, C, Hinz, R. S., and Guy, R. H. (1998) A new system for in vitro studies of iontophoresis. Pharm. Res. 5, 443–446.CrossRefGoogle Scholar
  44. 44.
    Bronaugh, R. L. (2000) In vitro percutaneous absorption models. Ann. NY Acad. Sci. 919, 188–191.PubMedCrossRefGoogle Scholar
  45. 45.
    Mata, J. E., Jackson, J. D., Joshi, S. S., et al. (2000) Pharmacokinetics and in vivo effects of a six-base phosphorothioate oligodeoxynucleotide with anticancer and hematopoetic activites in swine. J. Hematother. Stem Cell Res. 9, 205–214.PubMedCrossRefGoogle Scholar
  46. 46.
    Gao, W. Y., Han, F. S., Storm, C., Egan, W., and Cheng, Y. C. (1992) Phosphorothioate oligonucleotides are inhibitors of human DNA polymerases and RNase H: implications for antisense technology. Mol. Pharmacol. 41, 223–229.PubMedGoogle Scholar
  47. 47.
    Desjardins, J. P., Sproat, B. S., Beijer, B., et al. (1996) Pharmacokinetics of a synthetic, chemically modified hammerhead ribozyme against the rat cytochrome P-450 3A2 mRNA after single intravenous injections. J. Pharmacol. Exp. Ther. 278, 1419–1427.PubMedGoogle Scholar
  48. 48.
    Rowley, P. T., Kosciolek, B. A., and Kool, E. T. (1999) Circular antisense oligonucleotides inhibit growth of chronic myeloid leukemia cells. Mol. Med. 5, 693–700.PubMedGoogle Scholar
  49. 49.
    Iversen, P. L. (1902) Phosphorodiamidate morpholino oligomers: favorable properties for sequence-specific gene inactivation. Curr. Opin. Mol. Ther. 3, 235–238.Google Scholar
  50. 50.
    Freireich, E. J., Gehan, E. A., Rall, D. P., Schmidt, L. H., and Skipper, H. E. (1966) Quantitative comparison of toxicity of anticancer agents in mouse, rat, hamster, dog, monkey, and man. Cancer Chemother. Rep. 50, 219–244.PubMedGoogle Scholar
  51. 51.
    Arora, V., Hannah, T. L., Iversen, P. L., and Brand, R. M. (2002) Transdermal use of phosphorodiamidate morpholino oligomer AVI-4472 inhibits cytochrome p450 3A2 activity in male rat. Pharm. Res. 19, 1465–1470.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Rhonda M. Brand
    • 1
    • 2
  • Patrick L. Iversen
    • 3
  1. 1.Division of Emergency Medicine, Evanston Northwestern HealthcareNorthwestern UniversityEvanston
  2. 2.Department of Medicine, Feinberg School of MedicineNorthwestern UniversityEvanston
  3. 3.AVI BioPharmaCorvallis

Personalised recommendations