Skip to main content

Gene Therapy for Hypertension

Antisense Inhibition of the Renin-Angiotensin System

  • Protocol
Book cover Hypertension

Part of the book series: Methods In Molecular Medicine™ ((MIMM,volume 108))

  • 1724 Accesses

Abstract

Despite excellent antihypertensive drugs on the market, about 70% of all hypertensive patients do not have their blood pressure under control. This is due to problems of compliance, largely because of having to take drugs daily and side effects. We propose an antisense therapy for hypertension because antisense treatment can provide long-lasting, highly specific control of blood pressure. Antisense to oligonucleotides can be designed to inhibit genes that produce proteins known to be overactive in hypertension and that are proven targets of current drug treatments. These include β1-receptors, angiotensin-converting enzyme (ACE), and angiotensin type 1 receptors (AT1R). Antisense oligonucleotides are short (12-20 bases), single strands of DNA. They are designed to hybridize to specific mRNA and prevent translation of the target protein. Antisense inhibition of ACE, angiotensinogen or AT1R genes components of the renin-angiotensin system effectively reduce high blood pressure in animal models of hypertension. These include a genetic model (SHR) a surgical model (2KIC), and an environmental model (cold-induced hypertension). In all models, a single systemic administration of antisense decreased blood pressure by about 25 mmHg, and the effect could last up to 1 mo. No toxic effects of repeated antisense treatment were found. The results indicate that antisense therapy could be used for human hypertension and provide long-term protection that would increase compliance of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benetos, A., Gautier, S., Ricard, S., et al. (1996) Influence of angiotensin-con-verting enzyme and angiotensin II type 1 receptor gene polymorphisms on aortic stiffness in normotensive and hypertensive patients. Circulation 94, 698–703.

    PubMed  CAS  Google Scholar 

  2. Chung, O. and Unger, T. (1999) Angiotensin II receptor blockade and end-organ protection. Am. J. Hypertens. 12, S150–S156.

    Article  Google Scholar 

  3. Kurland, L., Melhus, H., Karlsson, J., et al. (2002) Polymorphisms in the angiotensinogen and angiotensin II type 1 receptor gene are related to change in left ventricular mass during antihypertensive treatment: results from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation versus Atenolol (SILVHIA) trial. J. Hypertens. 20, 657–663.

    Article  PubMed  CAS  Google Scholar 

  4. Unger, T. (2002) The role of the renin-angiotensin system in the development of cardiovascular disease. Am. J. Cardiol. 89, 3A–9A.

    Article  PubMed  CAS  Google Scholar 

  5. De Paepe, B., Verstraeten, V. M., De Potter, C. R., et al. (2002) Increased angiotensin II type-2 receptor density in hyperplasia, DCIS and invasive carcinoma of the breast is paralleled with increased iNOS expression. Histochem. Cell Biol. 117, 13–19.

    Article  PubMed  Google Scholar 

  6. De Paepe, B., Verstraeten, V. L., De Potter, C. R., et al. (2001) Growth stimulatory angiotensin II type-1 receptor is upregulated in breast hyperplasia and in situ carcinoma but not in invasive carcinoma. Histochem. Cell Biol. 116, 247–254.

    PubMed  Google Scholar 

  7. Schmieder, R. E., Erdmann, J., Delles, C., et al. (2001) Effect of the angiotensin II type 2-receptor gene (+1675 G/A) on left ventricular structure in humans. J. Am. Coll. Cardiol. 37, 175–182.

    Article  PubMed  CAS  Google Scholar 

  8. Ichihara, S., Senbonmatsu, T., Price, E., Jr., et al. (2001) Angiotensin II type 2 receptor is essential for left ventricular hypertrophy and cardiac fibrosis in chronic angiotensin II-induced hypertension. Circulation 104, 346–351.

    PubMed  CAS  Google Scholar 

  9. Bloem, L. J., Foroud, T. M., Ambrosius, W. T., et al. (1997) Association of the Angiotensinogen Gene to Serum Angiotensinogen in Blacks and Whites. Hypertension 29, 1078–1082.

    PubMed  CAS  Google Scholar 

  10. Kim, H. S., Krege, J. H., Kluckman, K. D., et al. (1995) Genetic control of blood pressure and the angiotensinogen locus. Proc. Natl. Acad. Sci.USA 92, 2735–2739.

    Article  PubMed  CAS  Google Scholar 

  11. Walker, W. G., Whelton, P. K., Saito, H., et al. (1979) Relation between blood pressure and renin, renin substrate, angiotensin II, aldosterone and urinary sodium and potassium in 574 ambulatory subjects. Hypertension 1, 287–291.

    PubMed  CAS  Google Scholar 

  12. Fukamizu, A., Sugimura, K., Takimoto, E., et al. (1993) Chimeric renin-angio-tensin system demonstrates sustained increase in blood pressure of transgenic mice carrying both human renin and human angiotensinogen genes. J. Biol. Chem. 268, 11617–11621.

    PubMed  CAS  Google Scholar 

  13. Davisson, R. L., Ding, Y., Stec, D. E., et al. (1999) Novel mechanism of hypertension revealed by cell-specific targeting of human angiotensinogen in transgenic mice. Physiol. Genom. 1, 3–9.

    CAS  Google Scholar 

  14. Merrill, D. C., Thompson, M. W., Carney, C. L., et al. (1996) Chronic hypertension and altered baroreflex responses in transgenic mice containing the human renin and human angiotensinogen genes. J. Clin. Invest. 97, 1047–1055.

    Article  PubMed  CAS  Google Scholar 

  15. Morimoto, S., Cassell, M. D., Beltz, T. G., et al. (2001) Elevated blood pressure in transgenic mice with brain-specific expression of human angiotensinogen driven by the glial fibrillary acidic protein promoter. Circ. Res. 89, 365–372.

    Article  PubMed  CAS  Google Scholar 

  16. Ohkubo, H., Kawakami, H., Kakehi, H., et al. (1990) Generation of transgenic mice with elevated blood pressure by introduction of the rat renin and angiotensinogen genes. Proc. Natl. Acad. Sci. USA 87, 5153–5157.

    Article  PubMed  CAS  Google Scholar 

  17. Stec, D. E., Keen, H. L., and Sigmund, C. D. (2002) Lower blood pressure in floxed angiotensinogen mice after adenoviral delivery of cre-recombinase. Hypertension 39, 629–633.

    Article  PubMed  CAS  Google Scholar 

  18. Morishita, R., Higaki, J., Miyazaki, M., et al. (1992) Possible role of the vascular reninangiotensin system in hypertension and vascular hypertrophy. Hypertension 19, II62–II67.

    PubMed  CAS  Google Scholar 

  19. Morton, J. J. and Wallace, E. C. (1983) The importance of the renin-angiotensin system in the development and maintenance of hypertension in the two-kidney oneclip hypertensive rat. Clin. Sci. (Lond.) 64, 359–370.

    CAS  Google Scholar 

  20. Phillips, M. I. and Kimura, B. K. (1986) Levels of brain angiotensin in the spontaneously hypertensive rat and treatment with ramiprilat. J. Hypertens. Suppl. 4, S391–S394.

    PubMed  CAS  Google Scholar 

  21. Phillips, M. I. and Kimura, B. (1988) Brain angiotensin in the developing spontaneously hypertensive rat. J. Hypertens. 6, 607–612.

    Article  PubMed  CAS  Google Scholar 

  22. Navar, L. G., Von Thun, A. M., Zou, L., et al. (1995) Enhancement of intrarenal angiotensin II levels in 2 kidney 1 clip and angiotensin II induced hypertension. Blood Press. Suppl. 2, 88–92.

    PubMed  CAS  Google Scholar 

  23. Brown, L., Passmore, M., Duce, B., et al. (1997) Angiotensin receptors in cardiac and renal hypertrophy in rats. J. Mol. Cell Cardiol. 29, 2925–2929.

    Article  PubMed  CAS  Google Scholar 

  24. Gutkind, J. S., Kurihara, M., and Saavedra, J. M. (1988) Increased angiotensin II receptors in brain nuclei of DOCA-salt hypertensive rats. Am. J. Physiol. 255, H646–H650.

    PubMed  CAS  Google Scholar 

  25. Atwood, L. D., Kammerer, C. M., Samollow, P. B., et al. (1997) Linkage of Essential hypertension to the angiotensinogen locus in mexican americans. Hypertension 30, 326–330.

    PubMed  CAS  Google Scholar 

  26. Corvol, P. and Jeunemaitre, X. (1997) Molecular Genetics of human hypertension: role of angiotensinogen. Endocr. Rev. 18, 662–677.

    Article  PubMed  CAS  Google Scholar 

  27. Jain, S., Tang, X., Narayanan, C. S., et al. (2002) Angiotensinogen gene polymorphism at-217 affects basal promoter activity and is associated with hypertension in African-Americans. J. Biol. Chem. 277, 36,889–36,896.

    Article  PubMed  CAS  Google Scholar 

  28. Niu, T., Xu, X., Rogus, J., et al. (1998) Angiotensinogen gene and hypertension in Chinese. J. Clin. Invest. 101, 188–194.

    Article  PubMed  CAS  Google Scholar 

  29. Agerholm-Larsen, B., Nordestgaard, B. G., and Tybjarg-Hansen, A. (2000) ACE gene polymorphism in cardiovascular disease: meta-analyses of small and large studies in whites. Arterioscler. Thromb. Vasc. Biol. 20, 484–492.

    PubMed  CAS  Google Scholar 

  30. O’Donnell, C. J., Lindpaintner, K., Larson, M. G., et al. (1998) Evidence for association and genetic linkage of the angiotensin-converting enzyme locus with hypertension and blood pressure in men but not women in the framingham heart study. Circulation 97, 1766–1772.

    PubMed  Google Scholar 

  31. Bonnardeaux, A., Davies, E., Jeunemaitre, X., et al. (1994) Angiotensin II type 1 receptor gene polymorphisms in human essential hypertension. Hypertension 24, 63–69.

    PubMed  CAS  Google Scholar 

  32. Phillips, M. I. and Schmidt-Ott, K. M. (1999) The discovery of renin 100 years ago. News Physiol. Sci. 14, 271–274.

    PubMed  CAS  Google Scholar 

  33. Phillips, M. I. (2001) Gene therapy for hypertension: sense and antisense strategies. Expert. Opin. Biol. Ther. 1, 655–662.

    Article  PubMed  CAS  Google Scholar 

  34. Phillips, M. I. (2001) Gene therapy for hypertension: the preclinical data. Hypertension 38, 543–548.

    Article  PubMed  CAS  Google Scholar 

  35. Phillips, M. I. (2000) Somatic gene therapy for hypertension. Braz. J. Med. Biol. Res. 33, 715–721.

    Article  PubMed  CAS  Google Scholar 

  36. Kaplan, N. M. (1998) Clinical Hypertension. Williams &Williams, Baltimore.

    Google Scholar 

  37. Hodgson, T. A. and Cai, L. (2001) Medical care expenditures for hypertension, its complications, and its comorbidities. Med. Care 39, 599–615.

    Article  PubMed  CAS  Google Scholar 

  38. Kagiyama S, Kagiyama T, Phillips MI. (2001) Antisense oligonucleotides strategy in the treatment of hypertension. Curr Opin Mol Ther. 3, 258–264.

    PubMed  CAS  Google Scholar 

  39. Phillips, M. I., Wielbo, D., and Gyurko, R. (1994) Antisense inhibition of hypertension: a new strategy for renin-angiotensin candidate genes. Kidney Int. 46, 1554–1556.

    Article  PubMed  CAS  Google Scholar 

  40. Dzau, V. J., Mann, M. J., Morishita, R., et al. (1996) Fusigenic viral liposome for gene therapy in cardiovascular diseases. Proc. Natl. Acad. Sci. USA 93, 11421–11425.

    Article  PubMed  CAS  Google Scholar 

  41. Fillion, P., Desjardins, A., Sayasith, K., et al. (2001) Encapsulation of DNA in negatively charged liposomes and inhibition of bacterial gene expression with fluid liposome-encapsulated antisense oligonucleotides. Biochim. Biophys. Acta 1515, 44–54.

    Article  PubMed  CAS  Google Scholar 

  42. Hughes, J. A., Bennett, C. F., Cook, P. D., et al. (1994) Lipid membrane permeability of 2′-modified derivatives of phosphorothioate oligonucleotides. J. Pharm. Sci. 83, 597–600.

    Article  PubMed  CAS  Google Scholar 

  43. Zhang, Y. C., Bui, J. D., Shen, L., et al. (2000) Antisense inhibition of beta(1)adrenergic receptor mRNA in a single dose produces a profound and prolonged reduction in high blood pressure in spontaneously hypertensive rats. Circulation 101, 682–688.

    PubMed  CAS  Google Scholar 

  44. Zhang, Y. M., Rusckowski, M., Liu, N., et al. (2001) Cationic liposomes enhance cellular/nuclear localization of 99mTc-antisense oligonucleotides in target tumor cells.Cancer Biother. Radiopharm. 16, 411–419.

    Article  PubMed  CAS  Google Scholar 

  45. Morishita, R., Gibbons, G. H., Ellison, K. E., et al. (1993) Single intraluminal delivery of antisense cdc2 kinase and proliferating-cell nuclear antigen oligonucleotides results in chronic inhibition of neointimal hyperplasia. Proc. Natl. Acad. Sci. USA 90, 8474–8478.

    Article  PubMed  CAS  Google Scholar 

  46. Makino, N., Sugano, M., Ohtsuka, S., et al. (1999) Chronic antisense therapy for angiotensinogen on cardiac hypertrophy in spontaneously hypertensive rats. Cardiovasc. Res. 44, 543–548.

    Article  PubMed  CAS  Google Scholar 

  47. Clare, Z. Y., Kimura, B., Shen, L., et al. (2000) New beta-blocker: prolonged reduction in high blood pressure with beta(1) antisense oligodeoxynucleotides. Hypertension 35, 219–224.

    Google Scholar 

  48. Li, B., Hughes, J. A., and Phillips, M. I. (1997) Uptake and efflux of intact antisense phosphorothioate deoxyoligonucleotide directed against angiotensin receptors in bovine adrenal cells. Neurochem. Int. 31, 393–403.

    Article  PubMed  CAS  Google Scholar 

  49. Mohuczy, D. and Phillips, M. I. (2000) Designing antisense to inhibit the renin-angiotensin system. Mol. Cell Biochem. 212, 145–153.

    Article  PubMed  CAS  Google Scholar 

  50. Merdan, T., Kopecek, J., and Kissel, T. (2002) Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Advanced Drug Delivery Rev. 54, 715–758.

    Article  CAS  Google Scholar 

  51. Tang, X., Mohuczy, D., Zhang, Y. C., et al. (1999) Intravenous angiotensinogen antisense in AAV-based vector decreases hypertension. Am. J. Physiol. 277, H2392–H2399.

    PubMed  CAS  Google Scholar 

  52. Zhang, Y., Jeong, L. H., Boado, R. J., et al. (2002) Receptor-mediated delivery of an antisense gene to human brain cancer cells. J. Gene Med. 4, 183–194.

    Article  PubMed  Google Scholar 

  53. Kimura, B., Mohuczy, D., Tang, X., et al. (2001) Attenuation of hypertension and heart hypertrophy by adeno-associated virus delivering angiotensinogen antisense. Hypertension 37, 376–380.

    PubMed  CAS  Google Scholar 

  54. Phillips, M. I., Mohuczy-Dominiak, D., Coffey, M., et al. (1997) Prolonged reduction of high blood pressure with an in vivo, nonpathogenic, adeno-associated viral vector delivery of AT1-R mRNA antisense.PG. Hypertension 29, 374–380.

    PubMed  CAS  Google Scholar 

  55. Lu, D., Raizada, M. K., Iyer, S., et al. (1997) Losartan versus gene therapy: chronic control of high blood pressure in spontaneously hypertensive rats. Hypertension 30, 363–370.

    PubMed  CAS  Google Scholar 

  56. Metcalfe, B. L., Raizada, M., and Katovich, M. J. (2002) Genetic targeting of the renin angiotensin system for long-term control of hypertension. Curr. Hypertens. Rep. 4, 25–31.

    Article  PubMed  Google Scholar 

  57. Wang, H., Lu, D., Reaves, P. Y., et al. (2000) Retrovirally mediated delivery of angiotensin II type 1 receptor antisense in vitro and in vivo. Meth. Enzymol. 314, 581–590.

    Article  PubMed  CAS  Google Scholar 

  58. Hauswirth, W. W. and McInnes, R. R. (1998) Retinal gene therapy 1998: summary of a workshop. Mol. Vis. 4, 11.

    PubMed  CAS  Google Scholar 

  59. Sinnayah, P., Lindley, T. E., Staber, P. D., et al. (2002) Selective gene transfer to key cardiovascular regions of the brain: comparison of two viral vector systems. Hypertension 39, 603–608.

    Article  PubMed  CAS  Google Scholar 

  60. Gyurko, R., Wielbo, D., and Phillips, M. I. (1993) Antisense inhibition of AT1 receptor mRNA and angiotensinogen mRNA in the brain of spontaneously hypertensive rats reduces hypertension of neurogenic origin. Regul. Pept. 49, 167–174.

    Article  PubMed  CAS  Google Scholar 

  61. Ambuhl, P., Gyurko, R., and Phillips, M. I. (1995) A decrease in angiotensin receptor binding in rat brain nuclei by antisense oligonucleotides to the angiotensin AT1 receptor. Regul. Pept. 59, 171–182.

    Article  PubMed  CAS  Google Scholar 

  62. Gyurko, R., Tran, D., and Phillips, M. I. (1997) Time course of inhibition of hypertension by antisense oligonucleotides targeted to AT1 angiotensin receptor mRNA in spontaneously hypertensive rats. Am. J. Hypertens. 10, 56S–62S.

    Article  PubMed  CAS  Google Scholar 

  63. Piegari, E., Galderisi, U., Berrino, L., et al. (2000) In vivo effects of partial phosphorothioated AT1 receptor antisense oligonucleotides in spontaneously hypertensive and normotensive rats. Life Sci. 66, 2091–2099.

    Article  PubMed  CAS  Google Scholar 

  64. Kagiyama, S., Varela, A., Phillips, M. I., et al. (2001) Antisense inhibition of brain reninangiotensin system decreased blood pressure in chronic 2-kidney, 1 clip hypertensive rats. Hypertension 37, 371–375.

    PubMed  CAS  Google Scholar 

  65. Peng, J. F., Kimura, B., Fregly, M. J., et al. (1998) Reduction of cold-induced hypertension by antisense oligodeoxynucleotides to angiotensinogen mRNA and AT1-receptor mRNA in brain and blood.PG. Hypertension 31, 1317–1323.

    PubMed  CAS  Google Scholar 

  66. Meng, H., Wielbo, D., Gyurko, R., et al. (1994) Antisense oligonucleotide to AT1 receptor mRNA inhibits central angiotensin induced thirst and vasopressin. Regul. Pept. 54, 543–551.

    Article  PubMed  CAS  Google Scholar 

  67. Sakai, R. R., Ma, L. Y., He, P. F., et al. (1995) Intracerebroventricular administration of angiotensin type 1 (AT1) receptor antisense oligonucleotides attenuate thirst in the rat. Regul. Pept. 59, 183–192.

    Article  PubMed  CAS  Google Scholar 

  68. Galli, S. M. and Phillips, M. I. (2001) Angiotensin II AT(1A) receptor antisense lowers blood pressure in acute 2-kidney, 1-clip hypertension. Hypertension 38, 674–678.

    Article  PubMed  CAS  Google Scholar 

  69. Yang, B., Li, D., Phillips, M. I., et al. (1998) Myocardial angiotensin II receptor expression and ischemia-reperfusion injury. Vasc. Med. 3, 121–130.

    PubMed  CAS  Google Scholar 

  70. Iyer, S. N., Lu, D., Katovich, M. J., et al. (1996) Chronic control of high blood pressure in the spontaneously hypertensive rat by delivery of angiotensin type 1 receptor antisense. Proc. Natl. Acad. Sci. USA 93, 9960–9965.

    Article  PubMed  CAS  Google Scholar 

  71. Pachori, A. S., Numan, M. T., Ferrario, C. M., et al. (2002) Blood pressure-independent attenuation of cardiac hypertrophy by AT(1)R-AS gene therapy. Hypertension 39, 969–975.

    Article  PubMed  CAS  Google Scholar 

  72. Wielbo, D., Sernia, C., Gyurko, R., et al. (1995) Antisense inhibition of hypertension in the spontaneously hypertensive rat. Hypertension 25, 314–319.

    PubMed  CAS  Google Scholar 

  73. Kagiyama, S., Tsuchihashi, T., Abe, I., et al. (1999) Antisense inhibition of angiotensinogen attenuates vasopressin release in the paraventricular hypotha-lamic nucleus of spontaneously hypertensive rats. Brain Res. 829, 120–124.

    Article  PubMed  CAS  Google Scholar 

  74. Sinnayah, P., Kachab, E., Haralambidis, J., et al. (1997) Effects of angio-tensinogen antisense oligonucleotides on fluid intake in response to different dipsogenic stimuli in the rat. Brain Res. Mol. Brain Res. 50, 43–50.

    Article  PubMed  CAS  Google Scholar 

  75. Sinnayah, P., McKinley, M. J., and Coghlan, J. P. (1997) Angiotensinogen antisense oligonucleotides and fluid intake. Clin. Exp. Hypertens. 19, 993–1007.

    Article  PubMed  CAS  Google Scholar 

  76. Wielbo, D., Simon, A., Phillips, M. I., et al. (1996) Inhibition of hypertension by peripheral administration of antisense oligodeoxynucleotides. Hypertension 28, 147–151.

    PubMed  CAS  Google Scholar 

  77. Makino, N., Sugano, M., Ohtsuka, S., et al. (1998) Intravenous injection with antisense oligodeoxynucleotides against angiotensinogen decreases blood pressure in spontaneously hypertensive rats. Hypertension 31, 1166–1170.

    PubMed  CAS  Google Scholar 

  78. Sugano, M., Tsuchida, K., Sawada, S., et al. (2000) Reduction of plasma angio-tensin II to normal levels by antisense oligodeoxynucleotides against liver angiotensinogen cannot completely attenuate vascular remodeling in spontaneously hypertensive rats.PG. J. Hypertens. 18, 725–731.

    Article  PubMed  CAS  Google Scholar 

  79. Tomita, N., Morishita, R., Higaki, J., et al. (1995) Transient decrease in high blood pressure by in vivo transfer of antisense oligodeoxynucleotides against rat angiotensinogen. Hypertension 26, 131–136.

    PubMed  CAS  Google Scholar 

  80. Morishita, R., Gibbons, G. H., Tomita, N., et al. (2000) Antisense oligode-oxynucleotide inhibition of vascular angiotensin-converting enzyme expression attenuates neointimal formation: evidence for tissue angiotensin-converting enzyme function. Arterioscler. Thromb. Vasc. Biol. 20, 915–922.

    PubMed  CAS  Google Scholar 

  81. Chen, H., Mohuczy, D., Li, D., et al. (2001) Protection against ischemia/ reperfusion injury and myocardial dysfunction by antisense-oligodeoxynucleotide directed at angiotensin-converting enzyme mRNA. Gene Ther. 8, 804–810.

    Article  PubMed  CAS  Google Scholar 

  82. Phillips, M. I. and Kimura, B. (1999) Central nervous system and angiotensin in the development of hypertension. In Development of the Hypertensive Pheno-type: Basic and Clinical Studies, (McCarty, R., Blizard, D. A., Chevalier, R. L., eds.), Elsevier, pp. 383–411.

    Google Scholar 

  83. Nakamura, S., Moriguchi, A., Morishita, R., et al. (1999) Activation of the brain angiotensin system by in vivo human angiotensin-converting enzyme gene transfer in rats. Hypertension 34, 302–308.

    PubMed  CAS  Google Scholar 

  84. Kubo, T., Ikezawa, A., Kambe, T., et al. (2001) Renin antisense injected intraven-tricularly decreases blood pressure in spontaneously hypertensive rats. Brain Res. Bull. 56, 23–28.

    Article  PubMed  CAS  Google Scholar 

  85. Moore, A. F., Heiderstadt, N. T., Huang, E., et al. (2001) Selective inhibition of the renal angiotensin type 2 receptor increases blood pressure in conscious rats. Hypertension 37, 1285–1291.

    PubMed  CAS  Google Scholar 

  86. Orr, R. M. (2001) Technology evaluation: fomivirsen, Isis Pharmaceuticals Inc/ CIBA vision. Curr. Opin. Mol. Ther. 3, 288–294.

    PubMed  CAS  Google Scholar 

  87. de Smet MD, Meenken CJ, van den Horn GJ. (1999) Fomivirsena phosphorothioate oligonucleotide for the treatment of CMV retinitis. Ocul. Immunol. Inflamm. 7, 189–198.

    Article  PubMed  Google Scholar 

  88. Acland, G. M., Aguirre, G. D., Ray, J., et al. (2001) Gene therapy restores vision in a canine model of childhood blindness. Nat. Genet. 28, 92–95.

    Article  PubMed  CAS  Google Scholar 

  89. Freytag, S. O., Khil, M., Stricker, H., et al. (2002) Phase I study of replication-competent adenovirus-mediated double suicide gene therapy for the treatment of locally recurrent prostate cancer. Cancer Res. 62, 4968–4976.

    PubMed  CAS  Google Scholar 

  90. Reid, T., Galanis, E., Abbruzzese, J., et al. (2001) Intra-arterial administration of a replication-selective adenovirus (dl1520) in patients with colorectal carcinoma metastatic to the liver: a Phase I trial. Gene Ther. 8, 1618–1626.

    Article  PubMed  CAS  Google Scholar 

  91. Harvey, B. G., Maroni, J., O’Donoghue, K. A., et al. (2002) Safety of local delivery of low-and intermediate-dose adenovirus gene transfer vectors to individuals with a spectrum of morbid conditions. Hum. Gene Ther. 13, 15–63.

    Article  PubMed  CAS  Google Scholar 

  92. The, B. S., Aguilar-Cordova, E., Kernen, K., et al. (2001) Phase I/II trial evaluating combined radiotherapy and in situ gene therapy with or without hormonal therapy in the treatment of prostate cancern Ä preliminary report. Int. J. Radiat. Oncol. Biol. Phys. 51, 605–613.

    Article  Google Scholar 

  93. Lamont, J. P., Nemunaitis, J., Kuhn, J. A., et al. (2000) A prospective phase II trial of ONYX-015 adenovirus and chemotherapy in recurrent squamous cell carcinoma of the head and neck (the Baylor experience). Ann. Surg. Oncol. 7, 588–592.

    PubMed  CAS  Google Scholar 

  94. Nishii, T., Moriguchi, A., Morishita, R., et al. (1999) Angiotensinogen gene-activating elements regulate blood pressure in the brain. Circ. Res. 85, 257–263.

    PubMed  CAS  Google Scholar 

  95. Katovich, M. J., Reaves, P. Y., Francis, S. C., et al. (2001) Gene therapy attenuates the elevated blood pressure and glucose intolerance in an insulin-resistant model of hypertension. J. Hypertens. 19, 1553–1558.

    Article  PubMed  CAS  Google Scholar 

  96. Morishita, R., Higaki, J., Tomita, N., et al. (1996) Role of transcriptional cis-elements, angiotensinogen gene-activating elements, of angiotensinogen gene in blood pressure regulation. Hypertension 27, 502–507.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Phillips, M.I., Kimura, B. (2005). Gene Therapy for Hypertension. In: Fennell, J.P., Baker, A.H. (eds) Hypertension. Methods In Molecular Medicine™, vol 108. Humana Press. https://doi.org/10.1385/1-59259-850-1:363

Download citation

  • DOI: https://doi.org/10.1385/1-59259-850-1:363

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-323-7

  • Online ISBN: 978-1-59259-850-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics