Skip to main content

Selection of Candidate Genes in Hypertension

  • Protocol
Hypertension

Part of the book series: Methods In Molecular Medicineā„¢ ((MIMM,volume 108))

  • 1738 Accesses

Abstract

Essential hypertension is a common disease with multifactorial etiology affecting up to 10 million individuals in the United Kingdom alone. Current knowledge of the genetic contribution to this trait is restricted to a number of rare variants that produce hypertensive phenotypes in a Mendelian fashion and to genes highlighted by work on blood pressure regulation in rodent models. Recent advances in comparative genomics, genome-wide scans for linkage, transcriptomics, proteomics, and metabolomics allow a systematic approach to the prioritization of candidate genes for hypertension and other complex traits. We review the current state of play in these fields related to hypertension and show, with a particular example, how these data may help target genetic studies in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ward, R. (1990) Familial aggregation and genetic epidemiology of blood pressure.In Hypertension: Pathophysiology, Diagnosis and Management (Laragh, J. H. and Brenner, B. M., eds.) Raven Press, New York pp. 81ā€“100.

    Google ScholarĀ 

  2. Nicholls, M. G. and Robertson, J. I. (2000) The renin-angiotensin system in theyear 2000. J. Hum. Hypertens. 14, 649ā€“666.

    ArticleĀ  CASĀ  Google ScholarĀ 

  3. Perazella, M. A. and Setaro, J. F. (2003) Renin-angiotensin-aldosterone system:fundamental aspects and clinical implications in renal and cardiovascular disorders.J. Nucl. Cardiol. 10, 184ā€“196.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  4. Jeunemaitre, X., Soubrier, F., Kotelevtsev, Y., et al. (1992) Molecular basis ofhuman hypertension: role of angiotensinogen. Cell 71, 169ā€“180.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  5. Caulfield, M., Lavender, P., Farrall, M., et al. (1994) Linkage of theangiotensinogen gene to essential hypertension. N. Engl. J. Med. 330, 1629ā€“1633.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  6. Lalouel, J. M., Rohrwasser, A., Terreros, D., Morgan, T., and Ward, K. (2001)Angiotensinogen in essential hypertension: from genetics to nephrology. J. Am.Soc. Nephrol. 12, 606ā€“615.

    PubMedĀ  CASĀ  Google ScholarĀ 

  7. Sethi, A. A., Nordestgaard, B. G., and Tybjaerg-Hansen, A. (2003)Angiotensinogen gene polymorphism, plasma angiotensinogen, and risk ofhypertension and ischemic heart disease: a meta-analysis. Arterioscler. Thromb.Vasc. Biol. 23, 1269ā€“1275.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  8. Brand, E., Herrmann, S. M., Nicaud, V., et al. (1999) The 825C/T polymorphismof the G-protein subunit beta3 is not related to hypertension. Hypertension 33,1175ā€“1178.

    PubMedĀ  CASĀ  Google ScholarĀ 

  9. Tomaszewski, M., Brain, N. J., Charchar, F. J., et al. (2002) Essential hypertensionand beta2-adrenergic receptor gene: linkage and association analysis.Hypertension 40, 286ā€“291.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  10. Herrmann, S. M., Nicaud, V., Tiret, L., et al. (2002) Polymorphisms of the beta2-adrenoceptor (ADRB2) gene and essential hypertension: the ECTIM andPEGASE studies. J.Hypertens. 20, 229ā€“235.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  11. Siffert, W. (2003) G-protein beta3 subunit 825T allele and hypertension. Curr.Hypertens. Rep. 5, 47ā€“53.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  12. Lifton, R. P., Dluhy, R. G., Powers, M., et al. (1992) A chimeric 11 betahydroxylase/aldosteronesynthase gene causes glucocorticoid-remediable aldos-teronism and human hypertension. Nature 355, 262ā€“265.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  13. Shimkets, R. A., Warnock, D. G., Bositis, C. M., et al. (1994) Liddleā€™s syndrome:heritable human hypertension caused by mutations in the b subunit of the epithelialsodium channel. Cell 79, 407ā€“414.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  14. Stewart, P. M., Krozowski, Z. S., Gupta, A., et al. (1996) Hypertension in thesyndrome of apparent mineralocorticoid excess due to mutation of the 11 betahydroxysteroiddehydrogenase type 2 gene. Lancet 347, 88ā€“91.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  15. Wilson, F. H., Disse-Nicodeme, S., Choate, K. A., et al. (2001) Human hypertensioncaused by mutations in WNK kinases. Science 293, 1107ā€“1112.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  16. Kumar, N. N., Benjafield, A. V., Lin, R. C., Wang, W. Y., Stowasser, M., and Morris, B. J. (2003) Haplotype analysis of aldosterone synthase gene (CYP11B2)123polymorphisms shows association with essential hypertension. J Hypertens. 21,1331ā€“1337.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  17. Zhu, H., Sagnella, G. A., Dong, Y., et al. (2003) Contrasting associations betweenaldosterone synthase gene polymorphisms and essential hypertension in blacksand in whites. J Hypertens. 21, 87ā€“95.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  18. Lim, P. O., Macdonald, T. M., Holloway, C., et al. (2002) Variation at the aldosteronesynthase (CYP11B2) locus contributes to hypertension in subjects with araised aldosterone-to-renin ratio. J.Clin. Endocrinol. Metab. 87, 4398ā€“4402.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  19. Melander, O., Orho-Melander, M., Bengtsson, K., et al. (2000) Associationbetween a variant in the 11 beta-hydroxysteroid dehydrogenase type 2 gene andprimary hypertension. J.Hum. Hypertens. 14, 819ā€“823.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  20. Ferrari, P. and Krozowski, Z. (2000) Role of the 1 1beta-hydroxysteroid dehydrogenasetype 2 in blood pressure regulation. Kidney Int. 57, 1374ā€“1381.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  21. Dong, Y.B., Zhu, H.D., Baker, E.H., et al. (2001) T594M and G442V polymorphismsof the sodium channel beta subunit and hypertension in a black popula-tion. J.Hum. Hypertens. 15, 425ā€“430.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  22. Iwai, N., Baba, S., Mannami, T., et al. (2001) Association of sodium channelgamma-subunit promoter variant with blood pressure. Hypertension 38, 86ā€“89.

    PubMedĀ  CASĀ  Google ScholarĀ 

  23. Iwai, N., Baba, S., Mannami, T., Ogihara, T., and Ogata, J. (2002) Association ofa sodium channel alpha subunit promoter variant with blood pressure. J. Am.Soc. Nephrol. 13, 80ā€“85.

    PubMedĀ  CASĀ  Google ScholarĀ 

  24. Persu, A., Barbry, P., Bassilana, F., et al. (1998) Genetic analysis of the betasubunit of the epithelial Na+channel in essential hypertension. Hypertension 32,129ā€“137.

    PubMedĀ  CASĀ  Google ScholarĀ 

  25. Persu, A., Coscoy, S., Houot, A.M., Corvol, P., Barbry, P., and Jeunemaitre, X.(1999) Polymorphisms of the gamma subunit of the epithelial Na+channel inessential hypertension. J.Hypertens. 17, 639ā€“645.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  26. Wilson, F. H., Kahle, K. T., Sabath, E., et al. (2003) Molecular pathogenesis ofinherited hypertension with hyperkalemia: the Na-Cl cotransporter is inhibitedby wild-type but not mutant WNK4. Proc. Natl. Acad. Sci. USA. 100, 680ā€“684.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  27. Erlich, P. M., Cui, J., Chazaro, I., et al. (2003) Genetic variants of WNK4 inwhites and African Americans with hypertension. Hypertension 41, 1191ā€“1195.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  28. Hilbert, P., Lindpaintner, K., Beckmann, J. S., et al. (1991) Chromosomal mappingof two genetic loci associated with blood-pressure regulation in hereditaryhypertensive rats. Nature 353, 521ā€“529.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  29. Jacob, H. J., Lindpaintner, K., Lincoln, S. E., et al. (1991) Genetic mapping of agene causing hypertension in the stroke-prone spontaneously hypertensive rat.Cell 67, 213ā€“224.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  30. Stoll, M., Kwitek-Black, A. E., Cowley, A. W., Jr., et al. (2000) New targetregions for human hypertension via comparative genomics. Genome Res. 10,473ā€“482.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  31. Jacob, H. J. and Kwitek, A. E. (2002) Rat genetics: attaching physiology andpharmacology to the genome. Nat. Rev. Genet. 3, 33ā€“42.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  32. Wakeland, E., Morel, L., Achey, K., Yui, M., and Longmate, J. (1997) Speedcongenics: a classic technique in the fast lane (relatively speaking). Immunol.Today. 18, 472ā€“477.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  33. Jeffs, B., Negrin, C. D., Graham, D., et al. (2000) Applicability of a ā€œspeedā€congenic strategy to dissect blood pressure quantitative trait loci on rat chromosome 2.Hypertension. 35, 179ā€“187.

    PubMedĀ  CASĀ  Google ScholarĀ 

  34. Collins, S. C., Wallis, R. H., Wallace, K., Bihoreau, M. T., and Gauguier, D.(2003) Marker-assisted congenic screening (MACS): a database tool for theefficient production and characterization of congenic lines. Mamm. Genome 14,350ā€“356.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  35. Kreutz, R. and Hubner, N. (2002) Congenic rat strains are important tools forthe genetic dissection of essential hypertension. Semin. Nephrol. 22, 135ā€“147.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  36. Dukhanina, O. I., Dene, H., Deng, A. Y., Choi, C. R., Hoebee, B., and Rapp, J. P.(1997) Linkage map and congenic strains to localize blood pressure QTL on ratchromosome 10. Mamm. Genome 8, 229ā€“235.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  37. Sivo, Z., Malo, B., Dutil, J., and Deng, A. Y. (2002) Accelerated congenics formapping two blood pressure quantitative trait loci on chromosome 10 of Dahlrats. J.Hypertens. 20, 45ā€“53.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  38. Palijan, A., Lambert, R., Dutil, J., Sivo, Z., and Deng, A. Y. (2003) Comprehensivecongenic coverage revealing multiple blood pressure quantitative trait locion Dahl rat chromosome 10. Hypertension. 42, 515ā€“522.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  39. Monti, J., Zimdahl, H., Schulz, H., Plehm, R., Ganten, D., and Hubner, N. (2003)The role of Wnk4 in polygenic hypertension: a candidate gene analysis on ratchromosome 10. Hypertension 41, 938ā€“942.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  40. Julier, C., Delepine, M., Keavney, B., et al. (1997) Genetic susceptibility forhuman familial essential hypertension in a region of homology with blood pressurelinkage on rat chromosome 10. Hum. Mol. Genet. 6, 2077ā€“2285.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  41. Baima, J., Nicolaou, M., Schwartz, F., et al. (1999) Evidence for linkage betweenessential hypertension and a putative locus on human chromosome 17. Hypertension 34, 4ā€“7.

    PubMedĀ  CASĀ  Google ScholarĀ 

  42. Levy, D., DeStefano, A.L., Larson, M. G., et al. (2000) Evidence for a geneinfluencing blood pressure on chromosome 17. Genome scan linkage results forlongitudinal blood pressure phenotypes in subjects from the Framingham heartstudy. Hypertension. 36, 477ā€“483.

    PubMedĀ  CASĀ  Google ScholarĀ 

  43. Rutherford, S., Johnson, M. P., Curtain, R.P., and Griffiths, L. R. (2001)Chromosome 17 and the inducible nitric oxide synthase gene in human essentialhypertension. Hum. Genet. 109, 408ā€“415.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  44. Caulfield, M., Munroe, P., Pembroke, J., et al. (2003) Genome-wide mapping ofhuman loci for essential hypertension. Lancet. 361, 2118ā€“2123.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  45. Knight, J., Munroe, P. B., Pembroke, J. C., and Caulfield, M. J. (2003) Humanchromosome 17 in essential hypertension. Ann. Hum. Genet. 67, 193ā€“206.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  46. Risch, N. (1990) Linkage strategies for genetically complex traits. I. multilocusmodels. Am. J. Hum. Genet. 46, 222ā€“228.

    PubMedĀ  CASĀ  Google ScholarĀ 

  47. Risch, N. (1990) Linkage strategies for genetically complex traits. II. The powerof affected relative pairs. Am. J. Hum. Genet. 46, 229ā€“241.

    PubMedĀ  CASĀ  Google ScholarĀ 

  48. Risch, N. (1990) Linkage strategies for genetically complex traits. III. The effectof marker polymorphism on analysis of affected relative pairs. Am. J. Hum.Genet. 46, 242ā€“253.

    PubMedĀ  CASĀ  Google ScholarĀ 

  49. Samani, N. J. (2003) Genome scans for hypertension and blood pressure regulation.Am. J. Hypertens. 16,167ā€“171.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  50. Garcia, E. A., Newhouse, S., Caulfield, M. J., and Munroe, P. B. (2003) Genesand hypertension. Curr. Pharm. Des. 9, 1679ā€“1689.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  51. Lander, E. and Kruglyak, L. (1995) Genetic dissection of complex traits: guidelinesfor interpreting and reporting linkage results. Nat. Genet. 11, 241ā€“247.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  52. Roberts, S. B., MacLean, C. J., Neale, M. C., Eaves, L. J., and Kendler, K. S.(1999) Replication of linkage studies of complex traits: an examination of variationin location estimates. Am. J. Hum. Genet. 65, 876ā€“884.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  53. Goring, H. H., Terwilliger, J. D., and Blangero, J. (2001) Large upward bias inestimation of locus-specific effects from genomewide scans. Am. J. Hum. Genet. 69, 1357ā€“1369.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  54. Siegmund, D. (2002) Upward bias in estimation of genetic effects. Am. J. Hum.Genet. 71, 1183ā€“1138.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  55. Suarez, B., Hampe, C., and Van Eerdewegh, P. (1994) Problems of replicatinglinkage claims in psychiatry. In Genetic Approaches to Mental Disorder (Cloninger, C., ed.) American Psychiatric Press, Washington, DC, pp. 23ā€“46.

    Google ScholarĀ 

  56. Krushkal, J., Ferrell, R., Mockrin, S., Turner, S., Sing, C. F., and Boerwinkle, E.(1999) Genome-wide linkage analysis of systolic blood pressure using highlydiscordant siblings. Circulation. 99, 1407ā€“1410.

    PubMedĀ  CASĀ  Google ScholarĀ 

  57. Hsueh, W. C., Mitchell, B. D., Schneider, J. L., et al. (2000) QTL influencingblood pressure maps to the region of PPH1 on chromosome 2q31-34 in Old OrderAmish. Circulation 101, 2810ā€“2816.

    PubMedĀ  CASĀ  Google ScholarĀ 

  58. Atwood, L. D., Samollow, P. B., Hixson, J. E., Stern, M. P., and MacCluer, J. W.(2001) Genome-wide linkage analysis of blood pressure in Mexican Americans.Genet. Epidemiol. 20, 373ā€“382.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  59. Zhu, D. L., Wang, H. Y., Xiong, M. M., et al. (2001) Linkage of hypertension tochromosome 2q14-q23 in Chinese families. J.Hypertens. 19, 55ā€“61.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  60. Perola, M., Kainulainen, K., Pajukanta, P., et al. (2000) Genome-wide scan ofpredisposing loci for increased diastolic blood pressure in Finnish siblings. J.Hypertens. 18, 1579ā€“1585.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  61. Arngrimsson, R., Sigurard ttir, S., Frigge, M. L., et al. (1999) A genome-widescan reveals a maternal susceptibility locus for pre-eclampsia on chromosome2p13. Hum. Mol. Genet. 8,1799ā€“1805.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  62. Moses, E. K., Lade, J. A., Guo, G., et al. (2000) A genome scan in families fromAustralia and New Zealand confirms the presence of a maternal susceptibilitylocus for pre-eclampsia, on chromosome 2. Am. J. Hum. Genet. 67, 1581ā€“1585.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  63. Deng, Z., Morse, J. H., Slager, S. L., et al. (2000) Familial primary pulmonaryhypertension (gene PPH1) is caused by mutations in the bone morphogeneticprotein receptor-II gene. Am. J. Hum. Genet. 67, 737ā€“744.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  64. Lane, K. B., Machado, R. D., Pauciulo, M. W., et al. (2000) Heterozygousgermline mutations in BMPR2, encoding a TGF-beta receptor, cause familialprimary pulmonary hypertension. The International PPH Consortium. Nat. Genet. 26, 81ā€“84.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  65. Runo, J. R. and Loyd, J. E. (2003) Primary pulmonary hypertension. Lancet 361,1533ā€“1544.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  66. Rindermann, M., Grunig, E., von Hippel, A., et al. (2003) Primary pulmonaryhypertension may be a heterogeneous disease with a second locus on chromosome2q31. J. Am. Coll. Cardiol. 41, 2237ā€“2244.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  67. Zimmermann, K., Opitz, N., Dedio, J., Renne, C., Muller-Esterl, W., and Oess, S. (2002) NOSTRIN: a protein modulating nitric oxide release and subcellulardistribution of endothelial nitric oxide synthase. Proc. Natl. Acad. Sci. USA. 99,17167ā€“17172.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  68. Rapp, J. P. (2000) Genetic analysis of inherited hypertension in the rat. Physiol.Rev. 80,135ā€“172.

    PubMedĀ  CASĀ  Google ScholarĀ 

  69. Podolin, P. L., Denny, P., Lord, C. J., et al. (1997) Congenic mapping of theinsulin-dependent diabetes (Idd) gene, Idd10, localizes two genes mediating theIdd10 effect and eliminates the candidate Fcgr1. J.Immunol. 159, 1835ā€“1843.

    PubMedĀ  CASĀ  Google ScholarĀ 

  70. Podolin, P. L., Armitage, N., Lord, C. J., et al. (1998) Localization of two insu-lin-dependent diabetes (Idd) genes to the Idd10 region on mouse chromosome 3.Mamm. Genome. 9, 283ā€“286.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  71. Serreze, D. V., Bridgett, M., Chapman, H. D., et al. (1998) Subcongenic analysisof the Idd13 locus in NOD/Lt mice: evidence for several susceptibility genesincluding a possible diabetogenic role for beta 2-microglobulin. J. Immunol. 160,1472ā€“1478.

    PubMedĀ  CASĀ  Google ScholarĀ 

  72. McBride, M. W., Carr, F. J., Graham, D., et al. (2003) Microarray analysis of ratchromosome 2 congenic strains. Hypertension 41, 847ā€“853.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  73. Dutil, J. and Deng, A. Y. (2001) Further chromosomal mapping of a blood pres-sure QTL in Dahl rats on chromosome 2 using congenic strains. Physiol.Genomics. 6, 3ā€“9.

    PubMedĀ  CASĀ  Google ScholarĀ 

  74. Takami, S., Higaki, J., Miki, T., et al. (1996) Analysis and comparison of newcandidate loci for hypertension between genetic hypertensive rat strains.Hypertens. Res. 19, 51ā€“56.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  75. Rapp, J. P., Garrett, M. R., Dene, H., Meng, H., Hoebee, B., and Lathrop, G.M.(1998) Linkage analysis and construction of a congenic strain for a blood pressureQTL on rat chromosome 9. Genomics. 51, 191ā€“196.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  76. Meng, H., Garrett, M. R., Dene, H., and Rapp, J.P. (2003) Localization of a bloodpressure QTL to a 2.4-cM interval on rat chromosome 9 using congenic strains.Genomics 81, 210ā€“220.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  77. Clark, J. S., Jeffs, B., Davidson, A. O., et al. (1996) Quantitative trait loci ingenetically hypertensive rats. Possible sex specificity. Hypertension 28, 898ā€“906.

    PubMedĀ  CASĀ  Google ScholarĀ 

  78. Matsumoto, C., Nara, Y., Ikeda, K., et al. (1996) Cosegregation of the new regionon chromosome 3 with salt-induced hypertension in female F2 progeny fromstroke-prone spontaneously hypertensive and Wistar-Kyoto rats. Clin. Exp.Pharmacol. Physiol. 23, 1028ā€“1034.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  79. Cicila, G. T., Rapp, J. P., Bloch, K. D., et al. (1994) Cosegregation of theendothelin-3 locus with blood pressure and relative heart weight in inbred Dahlrats. J.Hypertens. 12, 643ā€“651.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  80. Garrett, M. R., Dene, H., Walder, R., et al. (1998) Genome scan and congenicstrains for blood pressure QTL using Dahl salt-sensitive rats. Genome Res. 8,711ā€“723.

    PubMedĀ  CASĀ  Google ScholarĀ 

  81. Cicila, G. T., Choi, C., Dene, H., Lee, S. J., and Rapp, J. P. (1999) Two bloodpressure/cardiac mass quantitative trait loci on chromosome 3 in Dahl rats.Mamm. Genome. 10, 112ā€“116.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  82. Kato, N., Hyne, G., Bihoreau, M. T., Gauguier, D., Lathrop, G. M., and Rapp, J.P. (1999) Complete genome searches for quantitative trait loci controlling bloodpressure and related traits in four segregating populations derived from Dahlhypertensive rats. Mamm. Genome 10, 259ā€“265.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  83. Kreutz, R., Struk, B., Stock, P., Hubner, N., Ganten, D., and Lindpaintner, K.(1997) Evidence for primary genetic determination of heart rate regulation: chromosomalmapping of a genetic locus in the rat. Circulation 96,1078ā€“1081.

    PubMedĀ  CASĀ  Google ScholarĀ 

  84. Hamet, P., Pausova, Z., Dumas, P., et al. (1998) Newborn and adult recombinantinbred strains: a tool to search for genetic determinants of target organ damage inhypertension. Kidney Int. 53, 1488ā€“1492.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  85. Sebkhi, A., Zhao, L., Lu, L., Haley, C. S., Nunez, D. J., and Wilkins, M. R.(1999) Genetic determination of cardiac mass in normotensive rats: results froman F344 x WKY cross. Hypertension. 33, 949ā€“953.

    PubMedĀ  CASĀ  Google ScholarĀ 

  86. Barczak, A., Rodriguez, M. W., Hanspers, K., et al. (2003) Spotted longoligonucleotide arrays for human gene expression analysis. Genome Res. 13,1775ā€“1785.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  87. Su, A. I., Cooke, M. P., Ching, K. A., et al. (2002) Large-scale analysis of thehuman and mouse transcriptomes. Proc. Natl. Acad. Sci. USA. 99, 4465ā€“4470.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  88. Skrabanek, L. and Campagne, F. (2001) TissueInfo: high-throughput identificationof tissue expression profiles and specificity. Nucleic Acids Res. 29, E102ā€“E102.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  89. Lash, A. E., Tolstoshev, C. M., Wagner, L., et al. (2000) SAGEmap: a publicgene expression resource. Genome Res. 10, 1051ā€“1060.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  90. Huminiecki, L., Lloyd, A. T., and Wolfe, K. H. (2003) Congruence of tissueexpression profiles from Gene Expression Atlas, SAGEmap and TissueInfo da-tabases. BMC Genomics 4, 31.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  91. Geraci, M. W., Moore, M., Gesell, T., et al. (2001) Gene expression patterns inthe lungs of patients with primary pulmonary hypertension: a gene microarrayanalysis. Circ. Res. 88, 555ā€“562.

    PubMedĀ  CASĀ  Google ScholarĀ 

  92. Okuda, T., Sumiya, T., Mizutani, K., et al. (2002) Analyses of differential geneexpression in genetic hypertensive rats by microarray. Hypertens. Res. 25, 249ā€“255.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  93. Okuda, T., Sumiya, T., Iwai, N. & Miyata, T. (2002) Difference of gene expressionprofiles in spontaneous hypertensive rats and Wistar-Kyoto rats from twosources. Biochem. Biophys. Res. Commun. 296, 537ā€“543.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  94. Hu, W. Y., Fukuda, N., and Kanmatsuse, K. (2002) Growth characteristics,angiotensin II generation, and microarray-determined gene expression in vascularsmooth muscle cells from young spontaneously hypertensive rats. J.Hypertens. 20, 1323ā€“1333.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  95. Ueno, S., Ohki, R., Hashimoto, T., et al. (2003) DNA microarray analysis of invivo progression mechanism of heart failure. Biochem. Biophys. Res. Commun. 307, 771ā€“777.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  96. Liang, M., Yuan, B., Rute, E., et al. (2002) Renal medullary genes in salt-sensitivehypertension: a chromosomal substitution and cDNA microarray study. Physiol. Genomics. 8, 139ā€“149.

    PubMedĀ  CASĀ  Google ScholarĀ 

  97. Brazma, A., Hingamp, P., Quackenbush, J., et al. (2001) Minimum informationabout a microarray experiment (MIAME)-toward standards for microarray data. Nat. Genet. 29, 365ā€“371.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  98. Patterson, S. D. and Aebersold, R. H. (2003) Proteomics: the first decade andbeyond. Nat. Genet. 33 (Suppl.), 311ā€“323.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  99. Jager, D., Jungblut, P. R., and Muller-Werdan, U. (2002) Separation and identificationof human heart proteins. J.Chromatogr. B, Anal. Technol. Biomed. LifeSci. 771, 131ā€“153.

    ArticleĀ  CASĀ  Google ScholarĀ 

  100. Lee, R. T. (2001) Functional genomics and cardiovascular drug discovery. Circulation. 104, 1441ā€“1446.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  101. Arrell, D. K., Neverova, I., and Van Eyk, J. E. (2001) Cardiovascular proteomics:evolution and potential. Circ. Res. 88, 763ā€“773.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  102. Gromov, P. S., Ostergaard, M., Gromova, I., and Celis, J. E. (2002) Humanproteomic databases: a powerful resource for functional genomics in health anddisease. Prog. Biophys. Mol. Biol. 80, 3ā€“22.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  103. Brooks, H. L., Sorensen, A. M., Terris, J., et al. (2001) Profiling of renal tubuleNa+transporter abundances in NHE3 and NCC null mice using targetedproteomics. J.Physiol. 530, 359ā€“366.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  104. Thongboonkerd, V., Gozal, E., Sachleben, L. R., Jr., et al. (2002) Proteomicanalysis reveals alterations in the renal kallikrein pathway during hypoxia-induced hypertension. J.Biol. Chem. 277, 34708ā€“34716.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  105. Taurin, S., Seyrantepe, V., Orlov, S. N., et al. (2002) Proteome analysis andfunctional expression identify mortalin as an antiapoptotic gene induced byelevation of [Na+]i/[K+]i ratio in cultured vascular smooth muscle cells. Circ.Res. 91, 915ā€“922.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  106. Risch, N. and Merikangas, K. (1996) The future of genetic studies of complexhuman diseases. Science 273, 1516ā€“1517.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  107. Teng, J. and Risch, N. (1999) The relative power of family-based and case-controldesigns for linkage disequilibrium studies of complex human diseases. II.Individual genotyping. Genome Res. 9, 234ā€“241.

    PubMedĀ  CASĀ  Google ScholarĀ 

  108. Risch, N. and Teng, J. (1998) The relative power of family-based and case-controldesigns for linkage disequilibrium studies of complex human diseases I. DNApooling. Genome Res. 8, 1273ā€“1288.

    PubMedĀ  CASĀ  Google ScholarĀ 

  109. Herr, M., Dudbridge, F., Zavattari, P., et al. (2000) Evaluation of fine mappingstrategies for a multifactorial disease locus: systematic linkage and associationanalysis of IDDM1 in the HLA region on chromosome 6p21. Hum. Mol. Genet. 9, 1291ā€“1301.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  110. Kruglyak, L. (1999) Prospects for whole-genome linkage disequilibrium mappingof common disease genes. Nat. Genet. 22, 139ā€“144.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  111. Couzin, J. (2002) Human genome. HapMap launched with pledges of $100 million.Science 298, 941ā€“942.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  112. Terwilliger, J. D. and Weiss, K. M. (1998) Linkage disequilibrium mapping ofcomplex disease: fantasy or reality? Curr. Opin. Biotechnol. 9, 578ā€“594.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  113. Weiss, K. M. and Terwilliger, J. D. (2000) How many diseases does it take tomap a gene with SNPs? Nat. Genet. 26, 151ā€“157.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  114. Ozaki, K., Ohnishi, Y., Iida, A., et al. (2002) Functional SNPs in thelymphotoxin-alpha gene that are associated with susceptibility to myocardial infarction.Nat. Genet. 32, 650ā€“654.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  115. Raamsdonk, L. M., Teusink, B., Broadhurst, D., et al. (2001) A functionalgenomics strategy that uses metabolome data to reveal the phenotype of silentmutations. Nat. Biotechnol. 19, 45ā€“50.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  116. Phelps, T. J., Palumbo, A. V., and Beliaev, A. S. (2002) Metabolomics andmicroarrays for improved understanding of phenotypic characteristics controlledby both genomics and environmental constraints. Curr. Opin. Biotechnol. 13,20ā€“24.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  117. van Ommen, B. and Stierum, R. (2002) Nutrigenomics: exploiting systems biologyin the nutrition and health arena. Curr. Opin. Biotechnol. 13, 517ā€“521.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  118. Watkins, S. M. and German, J. B. (2002) Toward the implementation ofmetabolomic assessments of human health and nutrition. Curr. Opin. Biotechnol 13, 512ā€“516.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Charles, A. (2005). Selection of Candidate Genes in Hypertension. In: Fennell, J.P., Baker, A.H. (eds) Hypertension. Methods In Molecular Medicineā„¢, vol 108. Humana Press. https://doi.org/10.1385/1-59259-850-1:107

Download citation

  • DOI: https://doi.org/10.1385/1-59259-850-1:107

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-323-7

  • Online ISBN: 978-1-59259-850-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics