Hypertension pp 275-296 | Cite as

Proteomic Approaches in the Analysis of Hypertension

  • Soren Naaby-Hansen
  • Gayathri D.
  • Claire Hastie
  • Piers Gallney
  • Rainer Cramer
Part of the Methods In Molecular Medicine™ book series (MIMM, volume 108)


The completion of the genomic sequence and the definition of the genes provide a wealth of data to interpret cellular protein expression patterns and relate them to protein function. Proteomics is the large-scale study of proteins in the post-genomic era, aimed at identifying and characterizing protein expression, function, posttranslational modification, regulation, trafficking, interaction and structure, and their perturbation by disease and drug action. The multigenetic background and essentially unknown etiology of hypertension, makes this main killer a prime candidate for proteomic analysis. The classical proteomic approaches are based on twodimensional gel electrophoretic protein separation and their subsequent identification and characterization by mass spectrometry analysis. However, expression level analysis may not reflect the functional state of proteins and is biased towards long-lived abundant proteins. This review describes a variety of techniques that can be used to identify low-abundance proteins that may be of more functional interest. The modification of classical two-dimensional electrophoresis in order to study post-translational modifications, e.g., phosphorylation, is also discussed.

Key Words

Proteomics two-dimensional electrophoresis (2-DE) mass spectrometry difference gel electrophoresis (DIGE) cell surface/metabolic labeling phosphorylation cell signalling 


  1. 1.
    Gygi, S. P., Rochon, Y., Franza, B. R., and Aebersold, R. (1999) Correlation between Protein and mRNA abundance in yeast. Mol. Cell. Biol. 19,1720–1730.PubMedGoogle Scholar
  2. 2.
    Wasinger, V. C., Cordwell, S. J., Cerpa-Poljak, A., et al. (1995) Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 16,1090–1094.CrossRefGoogle Scholar
  3. 3.
    Blackstock, W. P. and Weir, M. P. (1999) Proteomics: Quantitative and physical mapping of cellular proteins. TIBTECH 17, 121–127.Google Scholar
  4. 4.
    Uetz, P., Giot, L., Cagney, G., et al. (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627.PubMedCrossRefGoogle Scholar
  5. 5.
    Zozulya, S., Lioubin, M., Hill, R. J., Abram, C., and Gishizky, M. L. (1999) Mapping signal transduction pathways by phage display. Nat. Biotechnol. 17, 1193–1198.PubMedCrossRefGoogle Scholar
  6. 6.
    Pandey, A. and Mann, M. (2000) Proteomics to study genes and genomes. Nature 405, 837–846.PubMedCrossRefGoogle Scholar
  7. 7.
    Strohman, R. (1994) Epigenesis: the missing beat in biotechnology? Biotechnology 12,156–164.PubMedCrossRefGoogle Scholar
  8. 8.
    Wang, J. H. and Hewick, R. M. (1999) Proteomics in drug discovery. DDT 4, 129–133.PubMedGoogle Scholar
  9. 9.
    Link, T. L., ed. (1999) 2-D Proteome Analysis Protocol. Humana, Totowa, NJ.Google Scholar
  10. 10.
    Jager, D., Jungblut, P. R., and Muller-Werdan, U. (2002) Separation and identification of human heart proteins. J. Chromatogr. B 771, 131–153.CrossRefGoogle Scholar
  11. 11.
    Naaby-Hansen, S., Waterfield, M. D., and Cramer, R. (2001) Proteomics-post-genomic cartography to understand cell function. TIPS 22, 376–384.PubMedGoogle Scholar
  12. 12.
    Patton, W. F. (2000) A thousand points of light: the application of fluorescence detection technologies to two-dimensional gel electrophoresis and proteomics. Electrophoresis 21, 1123–1144.PubMedCrossRefGoogle Scholar
  13. 13.
    Bright, R. K., Vocke, C. D., Emmert-Buck, M. R., et al. (1997) Generation and genetic characterization of immortal human prostate epithelial cell lines derived from primary cancer specimens. Cancer Res. 57, 995–1002.PubMedGoogle Scholar
  14. 14.
    Page, M. J., Amess, B., Townsend, R. R., et al. (1999) Proteomic definition of normal human luminal and myoepithelial breast cells purified from reduction mammoplasties. Proc. Natl. Acad. Sci. USA 96,12589–12594.PubMedCrossRefGoogle Scholar
  15. 15.
    Unlu, M., Morgan, M. E., Minden, J. S., et al. (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18,2071–2077.PubMedCrossRefGoogle Scholar
  16. 16.
    Gygi, S. P., Rist, B., Gerber, S A., Turecek, F., Gelb, M. H., and Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999.PubMedCrossRefGoogle Scholar
  17. 17.
    Naaby-Hansen, S., Flickinger, C. J., and Herr, J. C. (1997) Two-dimensional gel electrophoretic analysis of vectorially labeled surface proteins of human spermatozoa. Biol. Reprod. 56, 771–787.PubMedCrossRefGoogle Scholar
  18. 18.
    Naaby-Hansen, S. (1990) Electrophoretic map of acidic and neutral human sper-matozoal proteins. J. Reprod. Immunol. 17,167–185.PubMedCrossRefGoogle Scholar
  19. 19.
    Patton, W. F., Pluskal, M. G., Skea, W. M., et al. (1990) Development of a dedicated two-dimensional gel electrophoresis system that provides optimal pattern reproducibility and polypeptide resolution. Biotechniques 8, 518–527.PubMedGoogle Scholar
  20. 20.
    Chevallet, M., Santoni, V., Poinas, A., et al. (1998) New zwitterionic detergents improve the analysis of membrane proteins by 2-D electrophoresis. Electrophore-sis 19,1901–1909.CrossRefGoogle Scholar
  21. 21.
    Krause, K.-H. and Michalak, M. (1997) Calreticulin. Cell 88,439–443.PubMedCrossRefGoogle Scholar
  22. 22.
    Jungblut, P. and Thiede, B. (1997) Protein identification from 2-DE gels by MALDI mass spectrometry. Mass Spectrom. Rev. 16, 145–162.PubMedCrossRefGoogle Scholar
  23. 23.
    Yates, J. R. III. (1998) Mass spectrometry and the age of the proteome J. Mass Spectrom. 33, 1–19.PubMedCrossRefGoogle Scholar
  24. 24.
    Guetens, G., Van Cauwenberghe, K., De Boeck, G., et al. (2000) Nanotechnology in bio/clinical analysis. J. Chromatogr. B 739,139–150.CrossRefGoogle Scholar
  25. 25.
    Belov, M. E., Gorshkov, M. V., Udseth, H. R., Gordon, A. A., and Smith, R. D. (2000) Zeptomole-sensitivity electrospray ionization-fourier transform ion cyclotron resonance mass spectrometry of proteins Anal. Chem. 72, 2271–2279.PubMedCrossRefGoogle Scholar
  26. 26.
    Wilm, M., Shevchenko, A., Houthaeve, T., et al. (1996) Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 379, 466–469.PubMedCrossRefGoogle Scholar
  27. 27.
    Eckerskorn, C., Strupat, K., Schleuder, D., et al. (1997) Analysis of proteins by direct-scanning infrared-MALDI mass spectrometry after 2D-PAGE separation and electroblotting. Anal. Chem. 69, 2888–2892.PubMedCrossRefGoogle Scholar
  28. 28.
    Clauser, K., Baker, P., and Burlingame, A. L. (1999) Role of accurate mass measurement (±10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Anal. Chem. 71, 2871–2882.PubMedCrossRefGoogle Scholar
  29. 29.
    Gross, J. and Strupat, K. (1998) Matrix-assisted laser desorption/ionisation-mass spectrometry applied to biological macromolecules. TrAC 17,470–484.Google Scholar
  30. 30.
    Kebarle, P. (2000) A brief overview of the present status of the mechanisms involved in electrospray mass spectrometry. J. Mass Spectrom. 35, 804–817.PubMedCrossRefGoogle Scholar
  31. 31.
    Cole, R. B. (2000) Some tenets pertaining to electrospray ionization mass spectrometry. J. Mass Spectrom. 35, 763–772.PubMedCrossRefGoogle Scholar
  32. 32.
    Patterson, S. D. and Garrels, J. I. (1994) Two-dimensional gel analysis of posttranslational modifications. In Cell Biology, a Laboratory Handbook (Celis, J., ed.), Academic.Google Scholar
  33. 33.
    Link, A. J. and Bizios, N. (1999) Measuring the radioactivity of 2-D protein extracts. In 2-D Proteome Analysis Protocols (Link, A. J., ed.), Humana, Totowa, NJ.Google Scholar
  34. 34.
    Gygi, S. P. and Aebersold, R. (1999) Absolute quantitation of 2-D protein spots. In 2-D Proteome Analysis Protocols (Link, A. J., ed.), Humana, Totowa, NJ.Google Scholar
  35. 35.
    Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Soren Naaby-Hansen
    • 1
  • Gayathri D.
    • 2
  • Claire Hastie
    • 2
  • Piers Gallney
    • 3
  • Rainer Cramer
    • 3
  1. 1.Ludwig Institute for Cancer Research and Department of Biochemistry and Molecular BiologyRoyal Free and University College London Medical SchoolLondonUK
  2. 2.Ludwig Institute for Cancer ResearchRoyal Free and University College London Medical SchoolLondonUK
  3. 3.Ludwig Institute for Cancer ResearchRoyal Free and University College London Medical SchoolLondonUK

Personalised recommendations