Skip to main content

Genetic Analysis of Cytomegalovirus by Shuttle Mutagenesis

  • Protocol
DNA Viruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 292))

  • 1220 Accesses

Abstract

The genomes of Herpesviridae family members are among the largest of all viruses and therefore present a formidable challenge in understanding the roles of every gene in replication or pathogenesis. For example, murine cytomegalovirus (MCMV) has a genome of 230 kb that encodes more than 170 genes, many of which have unknown functions. Many techniques for the genetic analysis of a herpesvirus have been developed over the past two decades. One such procedure involves the use of a shuttle mutagenesis system, and it has successfully generated a pool of MCMV mutants that contained an engineered Tn3-type transposon inserted within their genome. The process of shuttle mutagenesis involves the construction of a genomic fragment library, transposon mutagenesis of the library, and generation of virus mutants through homologous recombination. This chapter details the methodologies required for implementing a Tn3-based shuttle mutagenesis system for construction of a mutant virus library.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mocarski, E., Post, L., and Roizman, B. (1980) Molecular engineering of the herpes simplex virus genome: insertion of a second L-S junction into the genome causes additional genome inversions. Cell 22, 243–255.

    Article  PubMed  CAS  Google Scholar 

  2. Spaete, R. R. and Mocarski, E. S. (1987) Insertion and deletion mutagenesis of the human cytomegalovirus genome. Proc. Natl. Acad. Sci. USA 84, 7213–7217.

    Article  PubMed  CAS  Google Scholar 

  3. Wolff, D., Jahn, G., and Plachter, B. (1993) Generation and effective enrichment of selectable human cytomegalovirus mutants using site-directed insertion of the neo gene. Gene 130, 167–173.

    Article  PubMed  CAS  Google Scholar 

  4. Patterson, C. E. and Shenk, T. (1999) Human cytomegalovirus UL36 protein is dispensable for viral replication in cultured cells. J. Virol. 73, 7126–7131.

    PubMed  CAS  Google Scholar 

  5. Abbate, J., Lacayo, J. C., Prichard, M., Pari, G., and McVoy, M. A. (2001) Bifunctional protein conferring enhanced green fluorescence and puromycin resistance. Biotechniques 31, 336–340.

    PubMed  CAS  Google Scholar 

  6. Morello, C. S., Cranmer, L. D., and Spector, D. H. (1999) In vivo replication, latency, and immunogenicity of murine cytomegalovirus mutants with deletions in the M83 and M84 genes, the putative homologs of human cytomegalovirus pp65 (UL83). J. Virol. 73, 7678–7693.

    PubMed  CAS  Google Scholar 

  7. Greaves, R. E, Brown, J. M., Vieira, J., and Mocarski, E. S. (1995) Selectable insertion and deletion mutagenesis of the human cytomegalovirus genome using the Escherichia coli guanosine phosphoribosyl transferase (gpt) gene. J. Gen. Virol. 76, 2151–2160.

    Article  PubMed  CAS  Google Scholar 

  8. Vieira, J., Farrell, H. E., Rawlinson, W. D., and Mocarski, E. S. (1994) Genes in the HindIII J fragment of the murine cytomegalovirus genome are dispensable for growth in cultured cells: insertion mutagenesis with a lacZ/gpt cassette. J. Virol. 68, 4837–4846.

    PubMed  CAS  Google Scholar 

  9. Kemble, G., Duke, G., Winter, R., and Spaete, R. (1996) Defined large-scale alterations of the human cytomegalovirus genome constructed by cotransfection of overlapping cosmids. J. Virol. 70, 2044–8.

    PubMed  CAS  Google Scholar 

  10. Messerle, M., Crnkovic, I., Hammerschmidt, W., Ziegler, H., and Koszinowski, U. H. (1997) Cloning and mutagenesis of a herpesvirus genome as an infectious bacterial artificial chromosome. Proc. Natl. Acad. Sci. USA 94, 14759–14763.

    Article  PubMed  CAS  Google Scholar 

  11. Weber, P. C., Levine, M., and Glorioso, J. C. (1987) Rapid identification of nonessential genes of herpes simplex virus type 1 by Tn5 mutagenesis. Science 236, 576–579.

    Article  PubMed  CAS  Google Scholar 

  12. Jenkins, F. J., Casadaban, M. J., and Roizman, B. (1985) Application of the mini-Mu-phage for target-sequence-specific insertional mutagenesis of the herpes simplex virus genome. Proc. Natl. Acad. Sci. USA 82, 4773–4777.

    Article  PubMed  CAS  Google Scholar 

  13. Smith, G. A. and Enquist, L. W. (1999) Construction and transposon mutagenesis in Escherichia coli of a full-length infectious clone of pseudorabies virus, an alpha-herpesvirus. J. Virol. 73, 6405–6414.

    PubMed  CAS  Google Scholar 

  14. Brune, W., Menard, C., Hobom, U., Odenbreit, S., Messerle, M., and Koszinowski, U. H. (1999) Rapid identification of essential and nonessential herpesvirus genes by direct transposon mutagenesis. Nat. Biotechnol. 17, 360–364.

    Article  PubMed  CAS  Google Scholar 

  15. Burns, N., Grimwade, B., Ross-Macdonald, P. B., et al. (1994) Large-scale analysis of gene expression, protein localization, and gene disruption in Saccharomyces cerevisiae. Genes Dev. 8, 1087–1105.

    Article  PubMed  CAS  Google Scholar 

  16. Seifert, H. S., Chen, E. Y., So, M., and Heffron, F. (1986) Shuttle mutagenesis: a method of transposon mutagenesis for Saccharomyces cerevisiae. Proc Natl Acad Sci USA 83, 735–739.

    Article  PubMed  CAS  Google Scholar 

  17. Zhan, X., Lee, M., Abenes, G., et al. (2000) Mutagenesis of murine cytomegalovirus using a Tn3-based transposon. Virology 266, 264–274.

    Article  PubMed  CAS  Google Scholar 

  18. Lee, M., Xiao, J., Haghjoo, E., et al. (2000) Murine cytomegalovirus containing a mutation at open reading frame M37 is severely attenuated in growth and virulence in vivo. J. Virol. 74, 11099–11107.

    Article  PubMed  CAS  Google Scholar 

  19. Michal, G. (ed.) (2002) Boehringer Mannheim Biochemical Pathways Chart. Roche Diagnostics Corporation, Roche Applied Science, Indianapolis, IN.

    Google Scholar 

  20. Mulligan, R. C. and Berg, P. (1980) Expression of a bacterial gene in mammalian cells. Science 209, 1422–1427.

    Article  PubMed  CAS  Google Scholar 

  21. Mulligan, R. C. and Berg, P. (1981) Selection for animal cells that express the Escherichia coli gene coding for xanthine-guanine phosphoribosyltransferase. Proc. Natl. Acad. Sci. USA 78, 2072–2076.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Lee, M., Liu, F. (2005). Genetic Analysis of Cytomegalovirus by Shuttle Mutagenesis. In: Lieberman, P.M. (eds) DNA Viruses. Methods in Molecular Biology, vol 292. Humana Press. https://doi.org/10.1385/1-59259-848-X:371

Download citation

  • DOI: https://doi.org/10.1385/1-59259-848-X:371

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-353-4

  • Online ISBN: 978-1-59259-848-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics