Skip to main content

Production of Erythromycin With Saccharopolyspora erythraea

  • Protocol
Microbial Processes and Products

Part of the book series: Methods in Biotechnology ((MIBT,volume 18))

Abstract

Actinomycetes are among the most fascinating microorganisms. Their developmental life cycle with its morphological and physiological differentiation and the rich repertoire of secondary metabolites (about 70-80% of bioactive secondary metabolites are being produced by actinomycetes) have resulted in a large research community studying these microbes. Of particular interest are actinomycetes for large-scale industrial production of bioactive molecules, such as polyketides, representing a diverse class of such compounds, including molecules with anticancer activity (e.g., mithramycin, daunorubicin, doxorubicin), antibacterials (e.g., erythromycin and derivatives or tetracyclines), antiparasitics (avermectins), or immunosuppressants (rapamycin). The biotechnological process for erythromycin production is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kieser, T., Bibb, J., Buttner, M. J., Chaiter, K. E, and Hopwood, D. A. (eds.) (2000) Practial Streptomyces Genetics, The John Innes Foundation, Norwich, UK.

    Google Scholar 

  2. Demain, A. L. (1989) Function of secondary metabolites, in Genetics and Molecular Biology of Industrial Microorganisms (Hershberger, C. L., Queener, S. W., and Hegemann, eds.), American Society for Microbiology, Washington DC, pp. 1–11.

    Google Scholar 

  3. Vining, L. C. and Stuttad, C. (ds.) (1995) Genetics and Biochemistry of Antibiotic Production, Butterworth-Heinemann, Boston, MA.

    Google Scholar 

  4. Dimroth, P., Walter, H., and Lynen, F. (1970) Biosynthesis of 6-methylsalicylic acid. Eur. J. Biochem. 13, 98–110.

    Article  PubMed  CAS  Google Scholar 

  5. O’Hagan, D. (ed.) (1991) The Polyketide Metabolites. Ellis Horwood, London.

    Google Scholar 

  6. Reimold, U., Kröger, M., Kreuzaler, F., and Hahlbrock, K. (1983) Coding and 3 non-coding nucleotide sequence of chalcone synthase mRNA and assignment of amino acid sequence of the enzyme. EMBO J. 2, 1801–1805.

    PubMed  CAS  Google Scholar 

  7. Katz, L. and Donadio, S. (1993) Polyketide synthesis: prospects for hybrid antibiotics. Annu. Rev. Microbiol. 47, 875–912.

    Article  PubMed  CAS  Google Scholar 

  8. Katz, L. (1997) Manipulation of modular polyketide synthases. Chem. Rev. 97, 2557–2576.

    Article  PubMed  CAS  Google Scholar 

  9. Staunton, J. and Wilkinson, B. (1997) Biosynthesis of erythromycin and rapamycin. Chem. Rev. 97, 2611–2630.

    Article  PubMed  CAS  Google Scholar 

  10. Malpartida, E and Hopwood, D. A. (1986) Physical and genetic characterisation of the gene cluster for the antibiotic actinorhodin in Streptomyces coelicolor A3(2). Mol. Gen. Genet. 205, 66–73.

    Article  PubMed  CAS  Google Scholar 

  11. Viollier, P. H. Minas, W., Dale, G. E., Folcher, M., and Thompson, C. J. (2001) Roles of aconitase in growth, metabolism, and morphological differentiation of Streptomyces coelicolor. J. Bacteriol. 183, 3193–3203.

    Article  PubMed  CAS  Google Scholar 

  12. Kelemen, G. H. Viollier, P. H., Tenor, J., Marri, L., Buttner, M. J., and Thompson, C. J. (2001) A connection between stress and development in the multicellular prokaryote Streptomyces coelicolor A3(2). Mol. Microbiol. 40, 804–814.

    Article  PubMed  CAS  Google Scholar 

  13. Vohradsky, J. Li, X., Dale, G., et al. (2000) Developmental control of stress stimu-lons in Streptomyces coelicolor revealed by statistical analyses of global gene expression patterns. J. Bacteriol. 182, 4979–4986.

    Article  PubMed  CAS  Google Scholar 

  14. Yamazaki, H., Ohnishi, Y., and Horinouchi, S. (2000) An A-factor-dependent extra-cytoplasmic function sigma factor (σAdsA) that is essential for morphological development in Streptomyces griseus. J. Bacteriol. 182, 4596–4605.

    Article  PubMed  CAS  Google Scholar 

  15. Ueda, K., Kawai, S., Ogawa, H.-O., et al. (2000) Wide distribution of interspecific stimulatory events on antibiotic production and sporulation among Streptomyces species. J. Antibiot. 53, 979–982.

    PubMed  CAS  Google Scholar 

  16. Waksman, S. A. (ed.) (1947) Microbial Antagonisms and Antibiotic Substances. Commonwealth Fund, New York.

    Google Scholar 

  17. Bunch, R. L., and McGuire, J. M. (1953) US patent 2653899 (to Eli Lilly Co.).

    Google Scholar 

  18. Brunker, P., Minas, W., Kallio, P. T., and Bailey, J. E. (1998) Genetic engineering of an industrial strain of Saccharopolyspora erythraea for stable expression of the Vitreoscilla haemoglobin gene (vhb). Microbiology 144(Pt. 9), 2441–2448.

    Article  PubMed  CAS  Google Scholar 

  19. Minas, W., Brünker, P., Kallio, P. T., and Bailey, J. E. (1998) Improved erythromy-cin production in a genetically engineered industrial strain of Saccharopolyspora erythraea. Biotechnol. Prog. 14, 561–566.

    Article  PubMed  CAS  Google Scholar 

  20. Ausubel, F., Brent, R., Kingston, R. E., et al. (eds.) (1989) Short Protocols in Molecular Biology, Wiley & Sons, New York, USA.

    Google Scholar 

  21. Gerhardt, B., Murray, R. G. E., Wood, W. A., and Krieg, N. R. (eds.) (1994) Manual of the Methods for General Bacteriology, American Society for Microbiology, Washington, DC.

    Google Scholar 

  22. Tsuji, K. and Goetz, J. F. (1978) High-performance liquid chromatographic determination of erythromycin. J. Chromatogr. 147, 359–367.

    Article  PubMed  CAS  Google Scholar 

  23. Tamburasov, Z. and Djokic, S. (1969) British patent GB 1100504 (to Pliva Pharm & Chem Works.).

    Google Scholar 

  24. Djokic, S. and Kobrehel, G. (1985) British patent GB 2094293 (to Pliva Pharm & Chem Works.).

    Google Scholar 

  25. Bright, G. M. (1984) European patent EP0101186 (to Pfizer).

    Google Scholar 

  26. Flynn, E. H., Murphy, H. W., and McMahon, R. E. (1955) Erythromycin. II. Des-N-methylerythromycin and N-Methyl-C14-erythromycin. J. Am. Chem. Soc. 77, 3104–3106.

    Article  CAS  Google Scholar 

  27. Gouin d’Ambrieres, S., Lutz, A., and J.-C., G. (1982) French patent FR2473525 (to Roussel UCLAF).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Minas, W. (2005). Production of Erythromycin With Saccharopolyspora erythraea . In: Barredo, JL. (eds) Microbial Processes and Products. Methods in Biotechnology, vol 18. Humana Press. https://doi.org/10.1385/1-59259-847-1:065

Download citation

  • DOI: https://doi.org/10.1385/1-59259-847-1:065

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-548-4

  • Online ISBN: 978-1-59259-847-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics