Skip to main content

Metabolic Engineering of Acremonium chrysogenum to Produce Deacetoxycephalosporin C and Bioconversion to 7-Aminodeacetoxycephalosporanic Acid

  • Protocol
Book cover Microbial Processes and Products

Part of the book series: Methods in Biotechnology ((MIBT,volume 18))

Abstract

7-Aminodeacetoxycephalosporanic acid (7-ADCA) and 7-aminocephalosporanic acid (7-ACA) are the starting materials for the production of all clinically important semisynthetic derivatives of cephalosporins. Whereas 7-ADCA is conventionally produced from penicillin by a synthetic chemical method, here we describe an alternative bioprocess for its production. The method is based on the disruption by one-step replacement of the cefEF gene, encoding the bifunctional expandase/hydroxylase activity, of a cephalosporin C-producing strain of Acremonium chrysogenum. Subsequently, cloning and expression of the cefE gene from Streptomyces clavuligerus in the A. chrysogenum disrupted transformant yield recombinant strains producing deacetoxycephalosporin C (DAOC). DAOC production level is almost equivalent to the total β-lactams biosynthesized by the parental strain. DAOC deacylation is carried out by two final enzymatic bioconversions catalyzed by D-amino acid oxidase (DAO) and glutaryl acylase (GLA), yielding 7-ADCA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banko, G., Wolfe, S., and Demain, A. L. (1986) Cell-free synthesis of delta-(L-alpha-aminoadipyl)-L-cysteine, the first intermediate of penicillin and cephalosporin biosynthesis. Biochem. Biophys. Res. Commun. 137, 528–535.

    Article  PubMed  CAS  Google Scholar 

  2. Banko, G., Demain, A. L., and Wolfe, S. (1987) δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACV synthetase): a multifunctional enzyme with broad substrate specificity for the synthesis of penicillins and cephalosporins precursors. J. Am. Chem. Soc. 109, 2858–2860.

    Article  CAS  Google Scholar 

  3. Gutiérrez, S., DÍez, B., Montenegro, E., and MartÍn, J. F. (1991) Characterization of the Cephalosporium acremonium pcbAB gene encoding α-aminoadipyl-cys-teinyl-valine synthetase, a large multidomain peptide synthetase: linkage to the pcbC gene as a cluster of early cephalosporin-biosynthetic genes and evidence of multiple functional domains. J. Bacteriol. 173, 2354–2365.

    PubMed  Google Scholar 

  4. Samson, S. M., Belagaje, R., Blankenship, D. T., et al. (1985) Isolation, sequence determination and expression in Escherichia coli of the isopenicillin N synthetase gene from Cephalosporium acremonium. Nature 318, 191–194.

    Article  PubMed  CAS  Google Scholar 

  5. Ullán, R. V., Casqueiro, J., Bañuelos, O., Fernández, F. J., Gutiérrez, S., and MartÍn, J. F. (2002) A novel epimerization system in fungal secondary metabolism involved in the conversion of isopenicillin N into penicillin N in Acremonium chrysogenum. J. Biol. Chem. 277, 46,216–46,225.

    Google Scholar 

  6. Scheidegger, A., Kuenzi, M. T., and Nüesch, J. (1984) Partial purification and catalytic properties of a bifunctional enzyme in the biosynthetic pathway of β-lactams in Cephalosporium acremonium. J. Antibiot. 37, 522–531.

    PubMed  CAS  Google Scholar 

  7. Samson, S. M., Dotzlaf, J. E., Slisz, M. L., et al. (1987) Cloning and expression of the fungal expandase hydroxylase gene involved in cephalosporin biosynthesis. Biotechnology 5, 1207–1214.

    Article  CAS  Google Scholar 

  8. Gutiérrez, S., Velasco, J., Fernández, F. J., and MartÍn J. F. (1992) The cefG gene of Cephalosporium acremonium is linked to the cefEF gene and encodes a deacetylcephalosporin C acetyltransferase closely related to homoserine O-acetyl-transferase. J. Bacteriol. 174, 3056–3064.

    PubMed  Google Scholar 

  9. DÍez, B., Mellado, E., RodrÍguez, M., Fouces, R., and Barredo, J. L. (1997) Recombinant microorganisms for the industrial production of antibiotics. Biotechnol. Bioeng. 55, 216–226.

    Article  PubMed  Google Scholar 

  10. Cantwell, C. A., Beckmann, R., Whiteman, P., Queener, S. W., and Abraham, E. P. (1992) Isolation of deacetoxycephalosporin C from fermentation broths of Penicillium chrysogenum transformants: construction of a new fungal biosynthetic pathway. Proc. R. Soc., London B 248, 283–289.

    Article  CAS  Google Scholar 

  11. Queener, S. W., Beckmann, R. J., Cantwell, C. A., et al. (1994) Improved expression of a hybrid Streptomyces clavuligerus cefE gene in Penicillium chrysogenum. Ann. NYAcad. Sci. 721, 178–193.

    Article  CAS  Google Scholar 

  12. Beckman, R., Cantwell, C. A., Whiteman, P., Queener, S. W., and Abraham, E. P. (1993) Production of deacetoxycephalosporin C by transformants of Penicillium chrysogenum: antibiotic biosynthetic pathway engineering, in Industrial Microorganisms: Basic and Applied Molecular Genetics (Baltz, R. H., Hegeman, G. D., and Skatrud, P. L., eds.), American Society for Microbiology, Washington DC, pp. 177–182.

    Google Scholar 

  13. Crawford, L., Stepan, A. M., McAda, P. C., et al. (1995) Production of cephalosporin intermediates by feeding adipic acid to recombinant Penicillium chrysogenum strains expressing ring expansion activity. Biotechnology 13, 58–62.

    Article  PubMed  CAS  Google Scholar 

  14. Shibuya, Y., Matsumoto, K., and Fujii, T. (1985) Isolation and properties of 7β-(4-carboxybutanamido) cephalosporanic acid acylase-producing bacteria. Agric. Biol. Chem. 45, 1561–1567.

    Google Scholar 

  15. Li, Y., Jiang, W., Yang, Y., Zhao, G., and Wang, E. (1998) Overproduction and purification of glutaryl 7-amino cephalosporanic acid acylase. Protein Express Purif. 12, 233–238.

    Article  CAS  Google Scholar 

  16. Dotzlaf, J. E. and Yeh, W. K. (1987) Copurification and characterization of deacetoxycephalosporin C synthase/hydroxylase from Cephalosporium acremonium. J. Bacteriol. 169, 1611–1618.

    PubMed  CAS  Google Scholar 

  17. Maeda, K., Luengo, J. M., Ferrero, O., et al. (1995) The substrate specificity of deacetoxycephalosporin C synthase (&quote;expandase&quote;) of Streptomyces clavuligerus is extremely narrow. Enzyme Microb. Technol. 17, 231–234.

    Article  CAS  Google Scholar 

  18. Alonso, J., Barredo, J. L., DÍez, B., et al. (1998) D-Amino-acid oxidase gene from Rhodotorula gracilis (Rhodosporidium toruloides) ATCC 26217. Microbiology 144, 1095–1101.

    Article  PubMed  CAS  Google Scholar 

  19. Alonso, J., Barredo J. L., Armisén, P., et al. (1999) Engineering the D-amino-acid oxidase from Trigonopsis variabilis to facilitate its overproduction in Escherichia coli and its downstream processing by tailor-made metal chelate supports. Enzyme Microb. Technol. 25, 88–95.

    Article  CAS  Google Scholar 

  20. Matsuda, A. and Komatsu, K. I. (1985) Molecular cloning and structure of the gene for 7β-(4-carboxybutanamido) cephalosporanic acid acylase from a Pseudomonas strain. J. Bacteriol. 163, 1222–1228.

    PubMed  CAS  Google Scholar 

  21. Croux, C., Costa, J., Barredo, J. L., and Salto, F. (1994) Process for the enzymatic preparation of 7-aminocephalosporanic acid. US patent 05354667.

    Google Scholar 

  22. Cambiaghi, S., Tomaselli, S., and Verga, R. (1995) Enzymatic process for preparing 7-aminocephalosporanic acid and derivatives. US patent 5424196.

    Google Scholar 

  23. Rothstein, R. J. (1983) One-step gene disruption in yeast. Methods Enzymol. 101, 202–211.

    Article  PubMed  CAS  Google Scholar 

  24. Shen, Y. Q., Wolfe, S., and Demain, A. L. (1986) Levels of isopenicillin N syn-thetase and deacetoxycephalosporin C synthetase in Cephalosporium acremonium producing high and low levels of cephalosporin C. Biotechnology 4, 61–64.

    Article  CAS  Google Scholar 

  25. Velasco, J., Adrio, J. L., Moreno, M. A., DÍez, B., Soler, G., and Barredo, J. L. (2000) Environmentally safe production of 7-aminodeacetoxycephalosporanic acid (7-ADCA) using recombinant strains of Acremonium chrysogenum. Nature Biotechnol. 18, 857–861.

    Article  CAS  Google Scholar 

  26. Punt, P. J., Oliver, R. P., Dingemanse, M. A., Pouwels, P. H., and van den Hondel, C. A. M. J. J. (1987) Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene 56, 117–124.

    Article  PubMed  CAS  Google Scholar 

  27. DÍez, B., Mellado, E., RodrÍguez, M., Bernasconi, E., and Barredo, J. L. (1999) The NADP-dependent glutamate dehydrogenase gene from Penicillium chrysogenum and the construction of expression vectors for filamentous fungi. Appl. Microbiol. Biotechnol. 52, 196–207.

    Article  PubMed  Google Scholar 

  28. Hanahan, D. (1985) Techniques for transformation of E. coli, in DNA Cloning: A Practical Approach (Glover, D. M., ed.), IRL Press, Oxford, pp. 109–135.

    Google Scholar 

  29. LePage, G. A. and Campbell, E. (1946) Preparation of streptomycin. J. Biol. Chem. 162, 163–171.

    CAS  Google Scholar 

  30. Queener, S. W., Ingolia, T. D., Skatrud, P. L., Chapman, J. L., and Kaster, K. R. (1985) A system for genetic transformation of Cephalosporium acremonium, in Microbiology-1985 (Lieve, L. ed.), American Society of Microbiology, Washington, DC, pp. 468–472.

    Google Scholar 

  31. Shen, Y. Q., Wolfe, S., and Demain, A. L. (1986) Levels of isopenicillin N synthetase and deacetoxycephalosporin C synthetase in Cephalosporium acremonium producing high and low levels of cephalosporin C. Biotechnology 4, 61–64.

    Article  CAS  Google Scholar 

  32. Sambrook, J., Fritsch, E. E, and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  33. Kovacevic, S., Tobin, M. B., and Miller, J. R. (1990) The β-lactam biosynthesis genes for isopenicillin N epimerase and deacetoxycephalosporin C synthetase are expressed from a single transcript in Streptomyces clavuligerus. J. Bacteriol. 172, 3952–3958.

    PubMed  CAS  Google Scholar 

  34. Simonetta, M. P., Vanoni, M. A., and Curti, B. (1982) D-Amino acid oxidase activity in the yeast Rhodotorula gracilis. Microbiol. Lett. 15, 27–31.

    CAS  Google Scholar 

  35. Armisén, P., Mateo, C., Cortés, E., et al. (1999) Selective adsorption of poly-His tagged glutaryl acylase on tailor-made metal chelate supports. J. Chromatogr. 848, 61–70.

    Article  Google Scholar 

  36. Fonda, M. L. and Anderson, B. M. (1967) D-Amino acid oxidase. Spectrophotometric studies. J. Biol. Chem. 242, 3957–3962.

    PubMed  CAS  Google Scholar 

  37. Balasingham, K., Warburton, D., Dunnill, P., and Lilly, M. D. (1972) The isolation and kinetics of penicillin amidase from Escherichia coli. Biochem. Biophys. Acta 276, 250–256.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

RodrÍguez-Sáiz, M., de la Fuente, JL., Barredo, JL. (2005). Metabolic Engineering of Acremonium chrysogenum to Produce Deacetoxycephalosporin C and Bioconversion to 7-Aminodeacetoxycephalosporanic Acid. In: Barredo, JL. (eds) Microbial Processes and Products. Methods in Biotechnology, vol 18. Humana Press. https://doi.org/10.1385/1-59259-847-1:041

Download citation

  • DOI: https://doi.org/10.1385/1-59259-847-1:041

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-548-4

  • Online ISBN: 978-1-59259-847-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics