Advertisement

Improved Polysaccharide Production Using Strain Improvement

  • Thomas P. West
Protocol
Part of the Methods in Biotechnology book series (MIBT, volume 18)

Abstract

A strain improvement procedure is outlined for the isolation of mutant strains from the bacterium Pseudomonas sp. ATCC 31461 that are capable of enhanced production of the polysaccharide gellan compared to its parent strain. With gellan having a number of industrial applications, the isolation of such mutant strains could prove valuable to its large-scale production. The mutant strains are isolated using a procedure that involves chemical mutagenesis and screening for resistance to the antibiotic ampicillin, with possible mutants being selected based on their mucoid appearance on the antibiotic-containing solid medium. The mutant strains were identified by following protocols using gravimetric determinations to measure the concentrations of gellan and cellular biomass. The viscosimetric properties of the mutant strain were compared to its parent strain by measuring the viscosities of their whole-culture medium and crude polysaccharide using procedures outlined.

Key Words

Gellan polysaccharide mutant isolation ampicillin biomass viscosity 

References

  1. 1.
    Kang, K. S., Veeder, G. T., Mirrasoul, P. J., Kaneko, T., and Cottrell, I. W. (1982) Agar-like polysaccharide produced by a Pseudomonas species: production and basic properties. Appl. Environ. Microbiol. 43, 1086–1091.PubMedGoogle Scholar
  2. 2.
    Anson, A., Fisher, P. J., Kennedy, A. F. D., and Sutherland, I. W. (1987) A bacterium a polysaccharide with unusual properties. J. Appl. Bacteriol. 62, 147–150.Google Scholar
  3. 3.
    Sa-Correia, I., Fialho, A. M., Videira, P., Moreira, L. M., Marques, A. R., and Albano, H. (2002) Gellan gum biosynthesis in Sphingomonas paucimobilis ATCC 31461: Genes, enzymes and exopolysaccharide production engineering. J. Ind. Microbiol. Biotechnol. 29, 170–176.PubMedCrossRefGoogle Scholar
  4. 4.
    Lin, C. C. and Casida, L. E., Jr. (1984) GELRITE as a gelling agent in media for the growth of thermophilic microorganisms. Appl. Environ. Microbiol. 47,427–429.PubMedGoogle Scholar
  5. 5.
    Omoto, T., Uno, Y., and Asai, I. (1999) The latest technologies for the application of gellan gum. Prog. Colloid Polym. Sci. 114, 123–126.CrossRefGoogle Scholar
  6. 6.
    Jansson, P.-E., Lindberg, B., and Sandford, P. A. (1983) Structural studies of gellan gum, an extracellular polysaccharide elaborated by Pseudomonas elodea.Carbohydr. Res. 124,135–139.CrossRefGoogle Scholar
  7. 7.
    O'Neill, M. A., Selvendran, R. R., and Morris, V. J. (1983) Structure of the acidic extracellular gelling polysaccharide produced by Pseudomonas elodea. Carbohydr. Res. 124, 123–133.CrossRefGoogle Scholar
  8. 8.
    Chandrasekaran, R., Radha, A., and Thailambal, V. G. (1992) Roles of potassium ions, acetyl and L-glyceryl groups in native gellan double helix: an X-ray study. Carbohydr. Res. 224,1–17.PubMedCrossRefGoogle Scholar
  9. 9.
    Manna, B., Gambhir, A., and Ghosh, P. (1996) Production and rheological characteristics of the microbial gum gellan. Lett. Appl. Microbiol. 23,141–145.CrossRefGoogle Scholar
  10. 10.
    Tang, J., Lelievre, J., Tung, M. A., and Zeng, Y. (1994) Polymer and ion concentration effects on gellan strength and strain. J. Food Sci. 59, 216–220.CrossRefGoogle Scholar
  11. 11.
    Tang, J., Tung, M. A., and Zeng, Y. (1995) Mechanical properties of gellan gels in relation to divalent cations. J. Food Sci. 60, 748–752.CrossRefGoogle Scholar
  12. 12.
    Pollock, T. J. (1993) Gellan-related polysaccharides and the genus Sphingomonas. J. Gen. Microbiol. 139, 1939–1945.Google Scholar
  13. 13.
    Dlamini, A. M. and Peiris, P. S. (1997) Production of exopolysaccharide by Pseudomonas sp. ATCC 31461 (Pseudomonas elodea) using whey as fermentation substrate. Appl. Microbiol. Biotechnol. 47, 52–57.CrossRefGoogle Scholar
  14. 14.
    West, T. P. and Strohfus, B. (1998) Effect of carbon source on exopolysaccharide production by Sphingomonas paucimobilis ATCC 31461. Microbiol. Res. 153, 327–329.Google Scholar
  15. 15.
    Fialho, A. M., Martins, L. O., Donval, M.-L., et al. (1999) Structures and properties gellan polymers produced by Sphingomonas paucimobilis ATCC 31461 from lactose compared with those produced from glucose and from cheese whey. Appl. Environ. Microbiol. 65, 2485–2491.PubMedGoogle Scholar
  16. 16.
    West, T. P. and Strohfus, B. (1998) Effect of complex nitrogen sources upon gellan production by Sphingomonas paucimobilis ATCC 31461. Microbios 94, 145–152.Google Scholar
  17. 17.
    West, T. P. and Strohfus, B. (1999) Effect of yeast extract on gellan production by Sphingomonas paucimobilis ATCC 31461. Microbios 97, 85–93.Google Scholar
  18. 18.
    West, T. P. and Fullenkamp, N. A. (2000) Ability of casamino acids to support gellan by Sphingomonas paucimobilis ATCC 31461. Microbios 102, 89–101.PubMedGoogle Scholar
  19. 19.
    West, T. P. and Fullenkamp, N. A. (2001) Effect of culture medium pH on bacterial production. Microbios 105, 133–140.PubMedGoogle Scholar
  20. 20.
    RodrÍguez, H. and Aguilar, L. (1997) Detection of Xanthomonas campestris mutants with increased xanthan production. J. Ind. Microbiol. 18, 232–234.CrossRefGoogle Scholar
  21. 21.
    Fialho, A. M., Monteiro, G, A., and Sá-Correia, I. (1991) Conjugal transfer of recombinant plasmids into gellan gum-producing and non-producing variants of Pseudomonas elodea ATCC 31461. Lett. Appl. Microbiol. 12, 85–87.PubMedCrossRefGoogle Scholar
  22. 22.
    Martins, L. O., Fialho, A. M., Rodrigues, P. L., and Sá-Correia, I. (1996) Gellan gum production and activity of biosynthetic enzymes in Sphingomonas paucimo-bilis mucoid and non-mucoid variants. Biotechnol. Appl. Biochem. 24, 47–54.Google Scholar
  23. 23.
    West, T. P. (2002) Isolation of a mutant strain of Pseudomonas sp. ATCC 31461 exhibiting elevated polysaccharide production. J. Ind. Microbiol. Biotechnol. 29, 185–188.PubMedCrossRefGoogle Scholar
  24. 24.
    Watson, J. M. and Holloway, B. W. (1976) Suppressor mutations in Pseudomonas aeruginosa. J. Bacteriol. 125, 780–786.PubMedGoogle Scholar
  25. 25.
    Lindegren, G., Hwang, Y. L., Oshima, Y., and Lindegren, C. C. (1965) Genetical mutants induced by ethyl methanesulfonate in Saccharomyces. Can. J. Genet. Cytol. 7, 491–499.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Thomas P. West
    • 1
  1. 1.Olson Biochemistry Laboratories, Department of Chemistry and BiochemistrySouth Dakota State UniversityBrookings

Personalised recommendations