Skip to main content

Preparation of an Industrial Biocatalyst of Penicillin G Acylase on Sepabeads

Improving the Design of Penicillin G Hydrolysis

  • Protocol
Microbial Enzymes and Biotransformations

Abstract

The enzyme penicillin G acylase (PGA) is currently employed at an industrial scale in the hydrolysis of penicillin and cephalosporin G. Here, we describe the preparation of a new immobilized preparation of the enzyme that yields derivatives that are very thermostable and resistant in the presence of organic solvents. The stabilization is obtained via a double strategy. First, using a new epoxy support (Sepabeads), a high degree of multipoint covalent attachment is achieved. A threestep methodology is proposed: (1) immobilization on the support at high ionic strength, (2) promotion of an intense multipoint covalent attachment by incubation for a long time at alkaline pH, and (3) blocking hydrophylization of the support surface. These derivatives are more rigid and therefore more resistant to inactivation by both temperature or organic solvents. Second, the contact of the enzyme with the organic solvent molecules is reduced by generating a highly hydrophilic microenvironment using polymers (polyethylenimine, aldehyde-dextran, and sulfate-dextran). The exact protocol for the production of this environment has been found to be critical to achieve the desired results (final derivatives remain active in 90% of organic solvents). This derivative could be used in the hydrolysis of antibiotics even in media fully saturated with organic solvents, making simpler the current processes of production of 6-aminopenicillanic acid (6-APA) or 7-aminodeacetoxycephalosporanic acid (7-ADCA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harrison, F. G. and Gibson, E. D. (1984) Approaches for reducing the manufacturing costs of 6-aminopenicillamic acid. Proc. Biochem. 19, 33–36.

    Google Scholar 

  2. Van der Wielen, L. A. M., Van Buel, M. J., Straathof, A. J. J., and Luyben, K. Ch. A. M. (1997) Modelling the enzymatic deacylation of penicillin G-Equilibrium and kinetic considerations. Biocatal. Biotransform. 15, 121–146.

    Article  Google Scholar 

  3. Arroyo, M., Torres, R., De la Mata, I., Castillón, M. P., and Acebal, C. (2000) Prediction of penicillin V acylase stability in water-organic cosolvent monophasic systems as a function of solvent composition. Enzyme Microb. Technol. 27, 122–126.

    Article  PubMed  CAS  Google Scholar 

  4. Klibanov, A. M. (1982) Stabilization of enzymes against thermal inactivation. Adv. Appl. Microb. 29, 1–28.

    Article  Google Scholar 

  5. Gianfreda, L. and Scarfi, M. R. (1991) Enzyme stabilization: State of the art. Mol. Cell. Biochem. 109, 97–128.

    Google Scholar 

  6. Nanalov, R. J., Kamboure, M. S., and Emanuiloda, E. I. (1993) Immobilization and properties of Bacillus stearothermophillus pulanase. Biotechnol. Appl. Biochem. 18, 409–416.

    Google Scholar 

  7. Desmukth, S. S., Duta, M., Choudohury, S., and Shanker, V. (1993) Preparation and properties of glucose isomerase immobilized on indon 48-R. Appl. Biochem. Biotechnol. 42, 95–104.

    Article  Google Scholar 

  8. Rody, L. G. and Shanke, V. A. (1983) Immobilized nucleases. Crit. Rev. Biotechnol. 13, 255–273.

    Article  Google Scholar 

  9. Guisán, J. M. (1988) Aldehyde gels as activated support for immobilization-stabilization of enzymes. Enzyme Microb. Technol. 10, 375–382.

    Article  Google Scholar 

  10. Guisán, J. M., Bastida, A., Cuesta, C., Fernández-Lafuente, R., and Rosell, C. M. (1991) Immobilization-stabilization of chymotrypsin by covalent attachment to aldehyde agarose gels. Biotechnol. Bioeng. 39, 75–84.

    Google Scholar 

  11. Mozhaev, V., Klibanov, A. M., Goldmacher, V. S., and Berezin, I. V. (1990) Operational stability of copolymerized enzymes at elevated temperatures. Biotechnol. Bioeng. 25, 1937–1945.

    Article  Google Scholar 

  12. Bickerstaff, G. F. (1997) Immobilization of enzymes and cells, in Methods in Biotechnology (Bickerstaff, G. F., ed.), Humana Press, Totowa, NJ.

    Google Scholar 

  13. Chibata, I., Tosa, T., and Sato, T. (1986) Biocatalysis: immobilized cells and enzymes. J. Mol. Cat. 37, 1–24.

    Article  CAS  Google Scholar 

  14. Gupta, M. N. (1991) Thermostabilization of proteins. Biotechnol. Appl. Biochem. 4, 1–10.

    Google Scholar 

  15. Hartmeier, W. (1985) Immobilized biocatalysts-from simple to complex systems. TIBTECH 3, 149–153.

    CAS  Google Scholar 

  16. Katchalski-Katzir, E. (1993) Immobilized enzymes-learning from past successes and failures. TIBTECH 11, 471–478.

    CAS  Google Scholar 

  17. Kennedy, J. E, Melo, E. H. M., and Jumel, K. (1990) Immobilized enzymes and cells. Chem. Eng. Progr. 45, 81–89.

    Google Scholar 

  18. Klibanov, A. M. (1983) Immobilized enzymes and cells as practical catalysts. Science 219, 722–727.

    Article  PubMed  CAS  Google Scholar 

  19. Rosevear, A. (1984) Immobilized biocatalysts-a critical review. J. Chem. Technol. Bioctechnol. 34B, 127–150.

    CAS  Google Scholar 

  20. Royer, G. P. (1980) Immobilized enzymes as catalyst. Catal. Rev. 22, 29–73.

    Article  CAS  Google Scholar 

  21. Mateo, C., Abian, O, Fernández-Lafuente, R., and Guisán, J. M. (2000) Increase in conformational stability of enzymes immobilized on epoxy-activated supports by favoring additional multipoint covalent attachment. Enzyme Microb. Technol. 26, 509–515.

    Article  PubMed  CAS  Google Scholar 

  22. Mateo, C., Abian, O., Fernández-Lorente, G., Predoche, J., Fernández-Lafuente, R., and Guisán, J. M. (2002) Sepabeads: a novel epoxy-support for stabilization of industrial enzymes via very intense multipoint covalent attachment. Biotechnol. Progr. 18, 629–634.

    Article  CAS  Google Scholar 

  23. Mateo, C., Fernández-Lorente, G., Cortés, E., García, J. L., Fernández-Lafuente, R., and Guisán, J. M. (2001) One step purification, covalent immobilization and additional satabilization of poly-hys-tagged proteins using a novel heterofunctional chelate-epoxy supports. Biotechnol. Bioeng. 76, 269–277.

    Article  PubMed  CAS  Google Scholar 

  24. Melander, W., Corradini, D., and Hoorvath, C. (1984) Salt-mediated retention of proteins in hydrophobic-interaction chromatography. Aplication of solvophobic theory. J. Chromatogr. 317, 67–85.

    Article  PubMed  CAS  Google Scholar 

  25. Smalla, K., Turkova, J., Coupek, J., and Herman, P. (1988) Influence of salts on the covalent immobilization of proteins to modified copolymers of 2-hydroxyethylmetacrylate with ethylene dimetacrylate. Biotechnol. Appl. Biochem. 10, 21–31.

    PubMed  CAS  Google Scholar 

  26. Wheatley, J. B. and Schmidt, D. E. (1993) Salt-induced immobilization of proteins on a high-performans liquid chromatographic epoxide affinity support. J. Chromatogr. 644, 11–16.

    Article  CAS  Google Scholar 

  27. Wheatley, J. B. and Schmidt, D. E. (1999) Salt-induced immobilization of affinity ligands onto epoxide activated supports. J. Chromatogr. A. 849, 1–12.

    Article  PubMed  CAS  Google Scholar 

  28. Kramer, D. M., Lehmann, K., Pennewiss, H., and Plainer, H. (1979) Oxirane acrylic beads for protein immobilization: a novel matrix for biocatalysis and biospecific adsorption. 26 International IUPAC Symposium on Macromolecules.

    Google Scholar 

  29. Fernández-Lafuente, R., Rosell, C. M., Guisán, J. M., Caanan-Haden, L., and Rodes, L. (1999) Facile synthesis of artificial enzyme nano-environments via solidphase chemistry of immobilized derivatives dramatic stabilization of penicillin acylase versus organic solvents. Enzyme Microb. Technol. 24, 96–103.

    Article  Google Scholar 

  30. Abian, O., Mateo, C., Fernández-Lorente, G., Palomo, J. M,. Fernández-Lafuente, R., and Guisán, J. M. (2001) Stabilization of immobilized enzymes against organic solvents: Generation of hyper-hydrophilic micro-environments fully surrounding enzyme molecules Biocatal. Biotransfor. 19, 489–503.

    Article  CAS  Google Scholar 

  31. Abian, O., Wilson, L., Mateo, C., et al. (2002) Preparation of artificial hyperhydrophilic micro-environments (polymeric salts) surrounding immobilized enzyme molecules. New enzyme derivatives to be used in any reaction medium. J. Mol. Cat. B Enzymatic. 19-20C, 295–303.

    Article  Google Scholar 

  32. Guisán, J. M., Rodríguez, V., Rosell, C. M., Soler, G., Bastida, A., Fernández-Lafuente, R., and García-Junceda, E. (1997) Stabilization of immobilized enzymes by chemical modification with polyfunctional macromolecules, in Methods in Biotechnology. Immobilization of Enzymes and Cells (Bickerstaff, G. E, ed.), Humana Press, Totowa, NJ, pp. 289–298

    Google Scholar 

  33. Fernández-Lafuente, R., Rosell, C. M., and Guisáán, J. M. (1996) Dynamic reaction design of enzymic biotransfomations in organic media: equilibrium controlled synthesis of antibiotics by penicillin G acylase. Biotechnol. Appl. Biochem. 24, 139–143.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Mateo, C. et al. (2005). Preparation of an Industrial Biocatalyst of Penicillin G Acylase on Sepabeads. In: Barredo, J.L. (eds) Microbial Enzymes and Biotransformations. Methods in Biotechnology, vol 17. Humana Press. https://doi.org/10.1385/1-59259-846-3:273

Download citation

  • DOI: https://doi.org/10.1385/1-59259-846-3:273

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-253-7

  • Online ISBN: 978-1-59259-846-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics