Skip to main content

Immobilization of Enzymes by Covalent Attachment

  • Protocol
Microbial Enzymes and Biotransformations

Part of the book series: Methods in Biotechnology ((MIBT,volume 17))

Abstract

Enzymes are finding increasing use for the production of agrochemicals, pharmaceuticals, and fine chemicals. They are almost always used in the immobilized form in order to simplify their removal from the product stream. In addition, immobilization often enhances the stability of the enzyme. Immobilization can be performed in a number of ways. This chapter discusses various methods, properties, and uses of covalently immobilized enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trevan, M. D. (ed.) (1980) Immobilized Enzymes, John Wiley & Sons, Ltd., New York.

    Google Scholar 

  2. Langmuir, I. and Schaefer, V. J. (1938) Activities of urease and pepsin monolayers. J. Am. Chem. Soc. 60, 1351–1360.

    CAS  Google Scholar 

  3. Nelson, J. M. and Griffin, E. G. (1916) Adsorption of invertase. J. Am. Chem. Soc. 38, 1109–1115.

    CAS  Google Scholar 

  4. Nelson, J. M. and Hitchcocks, D. I. (1921) Activity of adsorbed invertase. J. Am. Chem. Soc. 43, 1956–1961.

    CAS  Google Scholar 

  5. Goldstein, L. and Katchalski-Katzir, E. (1976) Immobilized enzymes-a survey, in Immobilized Enzyme Principles (Goldstein, L., ed.), Vol. 1, Academic Press, Inc., New York.

    Google Scholar 

  6. Rosevear, A., Kennedy, J. E, and Cabral, J. M. S. (eds.) (1987) Immobilised Enzymes and Cells, Adam Hilger, Bristol.

    Google Scholar 

  7. Clark, D. S. (1994) Can immobilization be exploited to modify enzyme activity? Trends Biotechnol. 12, 439–443.

    CAS  Google Scholar 

  8. Klibanov, A. M. (1979) Enzyme stabilization by immobilization. Anal. Biochem. 93, 1–23.

    PubMed  CAS  Google Scholar 

  9. Kawamura, Y., Nakanishi, K., Matsuno, R., and Kamikubo, T. (1981) Stability of immobilized a-chymotrypsin. Biotechnol. Bioeng. 23, 1219–1236.

    CAS  Google Scholar 

  10. Mozhaev, V. V., Siksnis, V. A., Torchilin, V. P., and Martinek, K. (1983) Operational stability of copolymerized enzymes at elevated temperatures. Biotechnol. Bioeng. 25, 1937–1945.

    PubMed  CAS  Google Scholar 

  11. Mozhaev, V. V. (1993) Mechanism-based strategies for protein thermostabilization. Trends Biotechnol. 11, 88–95.

    PubMed  CAS  Google Scholar 

  12. Adlercreutz, P. (1991) On the importance of the support material for enzymatic synthesis in organic media. Support effects at controlled water activity. Eur. J. Biochem. 199, 609–614.

    PubMed  CAS  Google Scholar 

  13. Ingalls, R. G., Squires, R. G., and Butler, L. G. (1975) Reversal of enzymatic hydrolysis: rate and extent of ester synthesis as catalyzed by chymotrypsin and subtilisin carlsberg at low water concentratons. Biotechnol. Bioeng. 17, 1627–1637.

    CAS  Google Scholar 

  14. Reslow, M., Adlercreutz, P., and Mattiasson, B. (1987) On the importance of the support material for bioorganic synthesis: influence of water partition between solvent, enzyme and solid support in water-poor reaction media. Eur. J. Biochem. 172, 573–578.

    Google Scholar 

  15. Tanaka, A. and Kawamoto, T. (1991) Immobilized enzymes in organic solvents. Bioprocess Technol. 14, 183–208.

    PubMed  CAS  Google Scholar 

  16. Wang, P., Sergeeva, M. V., Lim, L., and Dordick, J. S. (1997) Biocatalytic plastics as active and stable materials for biotransformation. Nat. Biotechnol. 15, 789–793.

    PubMed  CAS  Google Scholar 

  17. Dordick, J. S. (1989) Enzymatic catalysis in monophasic organic solvents. Enzyme Microb. Tech. 11, 194–211.

    CAS  Google Scholar 

  18. Mozhaev, V. V., Sergeeva, M. V., Belova, A. B., and Khmelnitsky, Y. L. (1990) Multipoint attachment to a support protects enzyme from inactivation by organic solvents: α-chymotrypsin in aqueous solutions of alcohols and diols. Biotechnol. Bioeng. 35, 653–659.

    PubMed  CAS  Google Scholar 

  19. Srere, P. A. and Uyeda, K. (1976) Functional groups on enzymes suitable for binding to matrices. Methods Enzymol. 44, 11–19.

    PubMed  CAS  Google Scholar 

  20. Kennedy, J. R, Melo, E. H. M., and Jumel, K. (1990) Immobilized enzymes and cells. Chem. Eng. Prog. 86, 81–89.

    CAS  Google Scholar 

  21. Fasman, G. D. (ed.) (1989) Predictions of Protein Structure and the Principles of Protein Conformation, Plenum Press, New York.

    Google Scholar 

  22. Mosbach, K. (1976) Immobilized Enzymes. Vol. 44, in Methods in Enzymology (Kaplan, N. O., ed.), Academic Press, New York.

    Google Scholar 

  23. Weetall, H. H. (1969) Trypsin and papain covalently coupled to porous glass: preparation and characterization. Science 166, 615–617.

    PubMed  CAS  Google Scholar 

  24. Weetall, H. H. and Filbert, A. M. (1974) Porous glass for affinity chromatography applications. Vol. 34, in Methods in Enzymology (Wilchek, M., ed.), Academic Press, New York.

    Google Scholar 

  25. Messing, R. A. and Weetall, H. H. (1970) Chemically coupled enzymes. U.S. Pat. 3, 519,538.

    Google Scholar 

  26. Kadima, T. A. and Pickard, M. A. (1990) Immobilization of chloroperoxidase on aminopropyl-glass. Appl. Environ. Microb. 56, 3473–3477.

    CAS  Google Scholar 

  27. Rohrback, R. P. (1985) Support matrix and immobilized enzyme system. U.S. Pat. 4, 525,456.

    Google Scholar 

  28. Lantero, O. J. (1984) Immobilization of biocatalysts on granular carbon. U.S. Pat. 4, 438,196.

    Google Scholar 

  29. Chiang, J. P. and Lantero, O. J. (1987) Immobilization of biocatalysts on granular diatomaceous earth. U.S. Pat. 4, 713,333.

    Google Scholar 

  30. Goldberg, B. S. (1978) Method of immobilizing proteinaceous substances. U.S. Pat. 4, 169,014.

    Google Scholar 

  31. Goldberg, B. S. (1978) Immobilized proteins. U.S. Pat. 4, 102,746.

    Google Scholar 

  32. Crump, S. P. and Rozzell, J. D. (1992) Biocatalytic production of amino acids by transaminases, in Biocatalytic Production of Amino Acids and Derivatives (Rozzell, J. D. and Wagner, F., eds.), Vol. 1, Oxford University Press, New York, pp. 44–58

    Google Scholar 

  33. Messing, R. A. and Yaverbaum, S. (1978) Immobilization of proteins on inorganic support materials. U.S. Pat. 4, 071,409.

    Google Scholar 

  34. Leuba, J.-L., Renker, A., and Flaschel, E. (1990) Enzyme immobilization on mineral particles coated with chitosan. U.S. Pat. 4, 918,016.

    Google Scholar 

  35. Boller, T., Meier, C., and Menzler, S. (2002) Eupergit oxirane acrylic beads: How to make enzymes fit for biocatalysis. Org. Process. Res. Dev. 6, 509–519.

    CAS  Google Scholar 

  36. Katchalski-Katzir, E. and Kraemer, D. M. (2000) Eupergit C, a carrier for immobilization of enzymes of industrial potential. J. Mol. Catal. B-Enzym. 10, 157–176.

    CAS  Google Scholar 

  37. Hosaka, S., Murao, Y., Masuko, S., and Miura, K. (1983) Preparation of microspheres of poly(glycidyl methacrylate) and its derivatives as carriers for immobilized proteins. Immunol. Commun. 12, 509–517.

    PubMed  CAS  Google Scholar 

  38. Malmsten, M. and Larsson, A. (2000) Immobilization of trypsin on porous glycidyl methacrylate beads: effects of polymer hydrophilization. Colloid Surface B 18, 277–284.

    CAS  Google Scholar 

  39. Mujawar, S. K., Kotha, A., Rajan, C. R., Ponrathnam, S., and Shewale, J. G. (1999) Development of tailor-made glycidyl methacrylate-divinyl benzene copolymer for immobilization of D-amino acid oxidase from Aspergillus species strain 020 and its application in the bioconversion of cephalosporin C. J. Biotechnol. 75, 11–22.

    PubMed  CAS  Google Scholar 

  40. Turkova, J., Blaha, K., Malanikova, M., Vancurova, D., Svec, F., and Kalal, J. (1978) Methacrylate gels with epoxide groups as supports for immobilization of enzymes in pH range 3-12. Biochim. Biophys. Acta. 524, 162–169.

    PubMed  CAS  Google Scholar 

  41. Drobnik, J., Saudek, V., Svec, F., Kalal, J., Vojtisek, V., and Barta, M. (1979) Enzyme immobilization techniques on poly(glycidyl methacrylate-co-ethylene dimethacrylate) carrier with penicillin amidase as model. Biotechnol. Bioeng. 21, 1317–1332.

    PubMed  CAS  Google Scholar 

  42. Kotha, A., Raman, R. C., Ponrathnam, S., Kumar, K. K., and Shewale, J. G. (1998) Beaded reactive polymers 3: Effect of triacrylates as crosslinkers on the physical properties of glycidyl methacrylate copolymers and immoblization of penicillin G acylase. Appl. Biochem. Biotech. 74, 191–203.

    CAS  Google Scholar 

  43. Margel, S. (1982) Agarose polyacrolein microsphere beads. New effective immunoabsorbents. FEBS Lett. 145, 341–344.

    CAS  Google Scholar 

  44. Varlan, A. R., Sansen, W., Loey, A. V., and Hendrickx, M. (1996) Covalent enzyme immobilization on paramagnetic polyacrolein beads. Biosens. Bioelectron. 11, 443–448.

    PubMed  CAS  Google Scholar 

  45. Stich, T. (1990) Determination of protein covalently bound to agarose supports using bicinchiconic acid. Anal. Biochem. 191, 343–346.

    PubMed  CAS  Google Scholar 

  46. Lewis, W. S. and Schuster, S. M. (1990) Quantitation of immobilized proteins. J. Biochem. Bioph. Meth. 21, 129–144.

    CAS  Google Scholar 

  47. Bonde, M., Pontoppidan, H., and Pepper, D. S. (1992) Direct dye binding a quantitative assay for solid-phase immobilized proteins. Anal. Biochem. 200, 195–198.

    PubMed  CAS  Google Scholar 

  48. Orschel, M., Katerkamp, A., Meusel, M., and Cammann, K. (1998) Evaluation of several methods to quantify immobilized proteins on gold and silica surfaces. Colloid Surface B 10, 273–279.

    CAS  Google Scholar 

  49. Liese, A., Seelbach, K., and Wandrey, C. (eds.) (2000) Industrial Biotransformations, Wiley-VCH, Weinheim, Germany.

    Google Scholar 

  50. Hartmeier, W. (1988) Immobilized Biocatalysts, Springer-Verlag, New York.

    Google Scholar 

  51. Katchalski-Katzir, E. (1993) Immobilized enzymes-learning from past successes and failures. Trends Biotechnol. 11, 471–478.

    PubMed  CAS  Google Scholar 

  52. Rozzell, D. (2003) Personal communication.

    Google Scholar 

  53. Catalog of Enzyme Products 2003, BioCatalytics, Inc., Pasadena, CA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Novick, S.J., Rozzell, J.D. (2005). Immobilization of Enzymes by Covalent Attachment. In: Barredo, J.L. (eds) Microbial Enzymes and Biotransformations. Methods in Biotechnology, vol 17. Humana Press. https://doi.org/10.1385/1-59259-846-3:247

Download citation

  • DOI: https://doi.org/10.1385/1-59259-846-3:247

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-253-7

  • Online ISBN: 978-1-59259-846-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics