Skip to main content

Part of the book series: Methods in Biotechnology ((MIBT,volume 17))

Abstract

Proteases represent one of the three largest groups of industrial enzymes and account for about 60% of the total worldwide sale of enzymes. They are degradative enzymes of central importance because they can be employed in a number of industries to create change in product taste, texture, and appearance, as well as in waste recovery. They are also important in medical and pharmaceutical applications. Microorganisms represent an excellent source of proteases owing to their broad biochemical diversity and their susceptibility to genetic manipulation. In the microbial fermentation process, optimization of culture media is important to yield an economically viable amount of proteases. Taking into consideration the need for large-scale production of proteases, a brief outline of production techniques, recovery, purification, and characterization is discussed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rao, M. B., Tanksale, A.P., Ghatge, M. S., and Deshpande, V. V. (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. R. 62, 597–635.

    CAS  Google Scholar 

  2. Pandey, A., Soccol, C. R., Rodriguez-Leon, J. A., and Nigam, P. (2001) Production of enzymes by solid-state fermentation, in Solid-State Fermentation in Biotechnology Fundamentals and Applications, Asiatech Publishers, New Delhi, pp. 98–110.

    Google Scholar 

  3. George, S., Raju, V., Subramanian, T. V., and Jayaraman, K. (1997) Comparative study of protease production in solid state fermentation versus submerged fermentation. Bioprocess Eng. 16, 381–382.

    Article  CAS  Google Scholar 

  4. Tunga, R., Banerjee, R., and Bhattacharya, B. C. (1998) Optimizing factors affecting protease production under solid state fermentation. Bioprocess Eng. 19, 187–190.

    Article  CAS  Google Scholar 

  5. Chakraborty, R. and Srinivasan, M (1993) Production of a thermostable alkaline protease by a new Pseudomonas sp. by solid state fermentation. J. Microb. Biotechnol. 8, 7–16.

    CAS  Google Scholar 

  6. Aikat, K. and Bhattacharya, B. C. (2001) Protease production in solid state fermentation with liquid medium recycling in a stacked plate reactor and in packed bed reactor by a local strain of Rhizopus oryzae. Process Biochem. 36,1059–1068.

    Article  CAS  Google Scholar 

  7. Meenu, M., Santhosh, D., and Randhir, S. (2002) Purification and characterisation of alkaline protease from a mutant of Bacillus polymyxa. Ind. J. Microbiol. 42, 155–159.

    Google Scholar 

  8. Su, N. W. and Lee, M. H. (2001) Purification and characterisation of a novel salt tolerant protease from Aspergillus sp. FC-10, a soy sauce koji mold. J. Ind. Microbiol. Biotechnol. 26, 253–258.

    Article  PubMed  CAS  Google Scholar 

  9. Leighton, T. J., Doi, R. H., Warren, R. A. J., and Kelln, R. A. (1973) The relationship of serine protease activity to RNA polymerase modification and sporulation in Bacillus subtilis. J. Mol. Biol. 76, 103–122.

    Article  PubMed  CAS  Google Scholar 

  10. Germano, S., Pandey, A., Osaku, C. A., Rocha, S. N., and Soccol, C. R. (2003) Characterization and stability of proteases from Penicillium sp. produced by solid-state fermentation. Enzyme Microb. Tech. 32, 246–251.

    Article  CAS  Google Scholar 

  11. Makowski, G. S. and Rampsy, M. L. (1997) Gelatin zymography, in Protein Structure: A Practical Approach (Creighton, T. E., ed.), Oxford University Press, New York, pp. 21–23.

    Google Scholar 

  12. Kocabiyik, S. and Erdem, B. (2002) Intracellular alkaline proteases produced by thermoacidophiles: detection of protease heterogeneity by gelatin zymography and polymerase chain reaction (PCR), Bioresource Technol. 84, 29–33.

    Article  CAS  Google Scholar 

  13. Towbin, H., Staehelin, T., and Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4354.

    Article  PubMed  CAS  Google Scholar 

  14. Blumentals, I. I., Robinson, A. S., and Kelly, R. M. (1990) Characterisation of sodium dodecyl sulphate-resistant proteolytic activity in the hyperthermophilic archae-bacterium Pyrococcus furiosus. Appl. Environ. Microbiol. 56, 1992–1998.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Sandhya, C., Nampoothiri, K.M., Pandey, A. (2005). Microbial Proteases. In: Barredo, J.L. (eds) Microbial Enzymes and Biotransformations. Methods in Biotechnology, vol 17. Humana Press. https://doi.org/10.1385/1-59259-846-3:165

Download citation

  • DOI: https://doi.org/10.1385/1-59259-846-3:165

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-253-7

  • Online ISBN: 978-1-59259-846-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics