Skip to main content

Food-Grade Corynebacteria for Enzyme Production

  • Protocol
Microbial Enzymes and Biotransformations

Part of the book series: Methods in Biotechnology ((MIBT,volume 17))

  • 1689 Accesses

Abstract

The expression of genes coding for heterologous extracellular enzymes or proteins in corynebacteria has provided new capacities to these industrially important microorganisms, such as the use of the culture media as sources of essential amino acids and hydrolytic enzymes that can be used as complements in animal food or for the production of enzymes with industrial, clinical, or pharmaceutical applications. Using genetic manipulation techniques, several corynebacteria strains expressing genes coding for hydrolytic enzymes or proteins have been constructed in different laboratories. Such strains carry antibiotic resistance genes and consequently they cannot be used in the food industry due to the stringent regulations on genetically manipulated microorganisms. To solve this problem, here we describe a general method for the construction of engineered corynebacteria bearing a single copy of a gene coding for a hydrolytic enzyme or a desired protein in its chromosome where it is stably maintained with no selective pressure and lacking any antibiotic resistance gene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. SantamarÍa, R. I., Gil, J. A., Mesas, J. M., and MartÍn, J. F. (1984) Characterization of an endogenous plasmid and development of cloning vectors and a transformation system in Brevibacterium lactofermentum. J. Gen. Microbiol. 130, 2237–2246.

    Google Scholar 

  2. Miwa, K., Matsui, H., Terabe, M., Nakamori, S., Sano, K., and Momose, H. (1984) Cryptic plasmids in glutamic acid producing corynebacteria. Agric. Biol. Chem. 48, 2901–2903.

    CAS  Google Scholar 

  3. Deb, J. K. and Nath, N. (1999) Plasmids of corynebacteria. FEMS Microbiol. Lett. 175, 11–20.

    Article  PubMed  CAS  Google Scholar 

  4. SantamarÍa, R. I., MartÍn, J. E, and Gil, J. A. (1987) Identification of a promoter sequence in the plasmid pUL340 of Brevibacterium lactofermentum and construction of new cloning vectors for corynebacteria containing two selectable markers. Gene 56, 199–208.

    Article  PubMed  Google Scholar 

  5. Yeh, P., Oreglia, J., Prevots, F., and Sicard, A. M. (1986) A shuttle vector system for Brevibacterium lactofermentum. Gene 47, 301–306.

    Article  PubMed  CAS  Google Scholar 

  6. Nesvera, J., Patek, M., Hochmannova, J., and Pinkas, P. (1990) Plasmid shuttle vector with two insertionally inactivable markers for coryneform bacteria. Folia Microbiol. (Praha) 35, 273–277.

    Article  CAS  Google Scholar 

  7. Schafer, A., Kalinowski, J., Simon, R., Seep-Feldhaus, A. H., and Puhler, A. (1990) High-frequency conjugal plasmid transfer from gram-negative Escherichia coli to various gram-positive coryneform bacteria. J. Bacteriol. 172, 1663–1666.

    PubMed  CAS  Google Scholar 

  8. Qian, H., Fan, W., Wu, J., and Zheng, Z. (1994) Plasmid transfer from Escherichia coli to coryneform bacteria by conjugation. Chin. J. Biotechnol. 10, 55–60.

    PubMed  CAS  Google Scholar 

  9. Simon, R. (1984) High frequency mobilization of Gram-negative bacterial repli-cons by the in vitro constructed Tn5-Mob transposon. Mol. Gen. Genet. 196, 413–420.

    Article  PubMed  CAS  Google Scholar 

  10. Priefer, U. B., Simon, R., and Puhler, A. (1985) Extension of the host range of Escherichia coli vectors by incorporation of RSF1010 replication and mobilization functions. J. Bacteriol. 163, 324–330.

    PubMed  CAS  Google Scholar 

  11. Schafer, A., Tauch, A., Jager, W., Kalinowski, J., Thierbach, G., and Puhler, A. (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145, 69–73.

    Article  PubMed  CAS  Google Scholar 

  12. Cadenas, R. E, Martin, J. E, and Gil, J. A. (1991) Construction and characterization of promoter-probe vectors for corynebacteria using the kanamycin-resistance reporter gene. Gene 98, 117–121.

    Article  PubMed  CAS  Google Scholar 

  13. Patek, M., Eikmanns, B. J., Patek, J., and Sahm, H. (1996) Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif. Microbiology 142, 1297–1309.

    Article  PubMed  CAS  Google Scholar 

  14. Eikmanns, B. J., Kleinertz, E., Liebl, W., and Sahm, H. (1991) A family of Corynebacterium glutamicum/Escherichia coli shuttle vectors for cloning, controlled gene expression, and promoter probing. Gene 102, 93–98.

    Article  PubMed  CAS  Google Scholar 

  15. Bardonnet, N. and Blanco, C. (1991) Improved vectors for transcriptional signal screening in corynebacteria. FEMS Microbiol. Lett. 68, 97–102.

    Article  PubMed  CAS  Google Scholar 

  16. Ugorcakova, J., Bukovska, G., and Timko, J. (2000) Construction of promoter-probe shuttle vectors for Escherichia coli and corynebacteria on the basis of pro-moterless alpha-amylase gene. Folia Microbiol. (Praha) 45, 114–120.

    Article  CAS  Google Scholar 

  17. Cadenas, R. E, Fernández-González, C., MartÍn, J. E, and Gil, J. A. (1996) Construction of new cloning vectors for Brevibacterium lactofermentum. FEMS Microbiol. Lett. 137, 63–68.

    Article  PubMed  CAS  Google Scholar 

  18. Soual-Hoebeke, E., Sousa-D’Auria, C., Chami, M., Baucher, M. E, Guyonvarch, A., Bayan, N., et al. (1999) S-layer protein production by Corynebacterium strains is dependent on the carbon source. Microbiology 145, 3399–3408.

    PubMed  CAS  Google Scholar 

  19. Adham, S. A., RodrÍguez, S., Ramos, A., Santamaria, R. I., and Gil, J. A. (2003) Improved vectors for transcriptional/translational signal screening in corynebacteria using the melC operon from Streptomyces glaucescens as reporter. Arch. Microbiol. 180, 53–59.

    Article  PubMed  CAS  Google Scholar 

  20. SantamarÍa, R. I., Gil, J. A., and MartÍn, J. E (1985) High-frequency transformation of Brevibacterium lactofermentum protoplasts by plasmid DNA. J. Bacteriol. 162, 463–467.

    PubMed  Google Scholar 

  21. Liebl, W., Bayerl, A., Schein, B., Stillner, U., and Schleifer, K. H. (1989) High efficiency electroporation of intact Corynebacterium glutamicum cells. FEMS Microbiol. Lett. 53, 299–303.

    Article  PubMed  CAS  Google Scholar 

  22. van der Rest, M. E., Lange, C., and Molenaar, D. (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl. Microbiol. Biotechnol. 52, 541–545.

    Article  PubMed  Google Scholar 

  23. Adham, S. A., Campelo, A. B., Ramos, A., and Gil, J. A. (2001) Construction of a xylanase-producing strain of Brevibacterium lactofermentum by stable integration of an engineered xysA gene from Streptomyces halstedii JM8. Appl. Environ. Microbiol. 67, 5425–5430.

    Article  PubMed  CAS  Google Scholar 

  24. Schafer, A., Kalinowski, J., and Puhler, A. (1994) Increased fertility of Corynebacterium glutamicum recipients in intergeneric matings with Escherichia coli after stress exposure. Appl. Environ. Microbiol. 60, 756–759.

    PubMed  CAS  Google Scholar 

  25. Yoshihama, M., Higashiro, K., Rao, E. A., Akedo, M., Shanabruch, W. G., Follettie, M. T., et al. (1985) Cloning vector system for Corynebacterium glutamicum. J. Bacteriol. 162, 591–597.

    PubMed  CAS  Google Scholar 

  26. MartÍn, J. E, Santamaria, R. I., Sandoval, H., del Real, G., Mateos, L. M., Gil, J. A., and Aguilar, A. (1987) Cloning systems in amino acid-producing corynebacteria. Bio/Technology 5, 137–146.

    Article  Google Scholar 

  27. Mazodier, P., Petter, R., and Thompson, C. (1989) Intergeneric conjugation between Escherichia coli and Streptomyces species. J. Bacteriol. 171, 3583–3585.

    PubMed  CAS  Google Scholar 

  28. Cadenas, R. E, Gil, J. A., and MartÍn, J. F. (1992) Expression of Streptomyces genes encoding extracellular enzymes in Brevibacterium lactofermentum: secretion proceeds by removal of the same leader peptide as in Streptomyces lividans. Appl. Microbiol. Biotechnol. 38, 362–369.

    Article  PubMed  CAS  Google Scholar 

  29. Adham, S. A., Honrubia, P., DÍaz, M., Fernández-Abalos, J. M., SantamarÍa, R. I., and Gil, J. A. (2001) Expression of the genes coding for the xylanase Xys1 and the cellulase Cel1 from the straw-decomposing Streptomyces halstedii JM8 cloned into the amino-acid producer Brevibacterium lactofermentum ATCC13869. Arch. Microbiol. 177, 91–97.

    Article  PubMed  CAS  Google Scholar 

  30. Smith, M. D., Flickinger, J. L., Lineberger, D. W., and Schmidt, B. (1986) Protoplast transformation in coryneform bacteria and introduction of an alpha-amylase gene from Bacillus amyloliquefaciens into Brevibacterium lactofermentum. Appl. Environ. Microbiol. 51, 634–639.

    PubMed  CAS  Google Scholar 

  31. Vigal, T., Gil, J. A., Daza, A., GarcÍa-González, M. D., and MartÍn, J. E (1991) Cloning, characterization and expression of an alpha-amylase gene from Streptomyces griseus IMRU3570. Mol. Gen. Genet. 225, 278–288.

    Article  PubMed  CAS  Google Scholar 

  32. Ruiz-Arribas, A., Fernandez-Abalos, J. M., Sanchez, P., Garda, A. L., and SantamarÍa, R. I. (1995) Overproduction, purification, and biochemical characterization of a xylanase (Xys1) from Streptomyces halstedii JM8. Appl. Environ. Microbiol. 61, 2414–2419.

    PubMed  CAS  Google Scholar 

  33. Paradis, E W., Warren, R. A., Kilburn, D. G., and Miller, R. C., Jr. (1987) The expression of Cellulomonas fimi cellulase genes in Brevibacterium lactofermentum. Gene 61, 199–206.

    Article  PubMed  CAS  Google Scholar 

  34. Fernández-Abalos, J. M., Sánchez, P., Coll, P. M., Villanueva, J. R., Pérez, P., and SantamarÍa, R. I. (1992) Cloning and nucleotide sequence of celA1, and endo-beta-1,4-glucanase-encoding gene from Streptomyces halstedii JM8. J. Bacteriol. 174, 6368–6376.

    PubMed  Google Scholar 

  35. Brabetz, W., Liebl, W., and Schleifer, K. H. (1991) Studies on the utilization of lactose by Corynebacterium glutamicum, bearing the lactose operon of Escherichia coli. Arch. Microbiol. 155, 607–612.

    Article  PubMed  CAS  Google Scholar 

  36. Wells, J. A., Ferrari, E., Henner, D. J., Estell, D. A., and Chen, E. Y. (1983) Cloning, sequencing, and secretion of Bacillus amyloliquefaciens subtilisin in Bacillus sub-tilis. Nucleic Acids Res. 11, 7911–7925.

    Article  PubMed  CAS  Google Scholar 

  37. Lilley, G. G., Riffkin, M. C., Stewart, D. J., and Kortt, A. A. (1995) Nucleotide and deduced protein sequence of the extracellular, serine basic protease gene (bprB) from Dichelobacter nodosus strain 305: comparison with the basic protease gene (bprV) from virulent strain 198. Biochem. Mol. Biol. Int. 36, 101–111.

    CAS  Google Scholar 

  38. Billman-Jacobe, H., Wang, L., Kortt, A., Stewart, D., and Radford, A. (1995) Expression and secretion of heterologous proteases by Corynebacterium glutamicum. Appl. Environ. Microbiol. 61, 1610–1613.

    PubMed  CAS  Google Scholar 

  39. Shortle, D. (1983) A genetic system for analysis of staphylococcal nuclease. Gene 22, 181–189.

    Article  PubMed  CAS  Google Scholar 

  40. Liebl, W., Sinskey, A. J., and Schleifer, K. H. (1992) Expression, secretion, and processing of staphylococcal nuclease by Coryneb acterium glutamicum. J. Bacteriol. 174, 1854–1861.

    PubMed  CAS  Google Scholar 

  41. Ikura, K., Sasaki, R., and Motoki, M. (1992) Use of transglutaminase in quality-improvement and processing of food proteins. Agric. Food Chem. 2, 389–407.

    CAS  Google Scholar 

  42. Ralf, P., Simone, D., Jens, T. O., Isabella, R. R., Sabine, W., and Hans-Lothar, F. (1998) Bacterial pro-transglutaminase from Streptoverticillium mobaraense. Purification, characterisation and sequence of the zymogen. Eur. J. Biochem. 257, 570–576.

    Article  Google Scholar 

  43. Peyret, J. L., Bayan, N., Joliff, G., Gulik-Krzywicki, T., Mathieu, L., Schechter, E., and Leblon, G. (1993) Characterization of the cspB gene encoding PS2, an ordered surface-layer protein in Corynebacterium glutamicum. Mol. Microbiol. 9, 97–109.

    Article  PubMed  CAS  Google Scholar 

  44. Kikuchi, Y., Date, M., Yokoyama, K. I., Umezawa, Y., and Matsui, H. (2003) Secretion of active-form Streptoverticillium mobaraense transglutaminase by corynebacterium glutamicum: processing of the pro-transglutaminase by a cose-creted subtilisin-like protease from Streptomyces albogriseolus. Appl. Environ. Microbiol. 69, 358.

    Article  PubMed  CAS  Google Scholar 

  45. Suzuki, M., Taguchi, S., Yamada, S., Kojima, S., Miura, K. L, and Momose, H. (1997) A novel member of the subtilisin-like protease family from Streptomyces albogriseolus. J. Bacteriol. 179, 430.

    PubMed  CAS  Google Scholar 

  46. Borremans, M., de Wit, L., Volckaert, G., Ooms, J., de Bruyn, J., Huygen, K., et al. (1989) Cloning, sequence determination, and expression of a 32-kilodalton-protein gene of Mycobacterium tuberculosis. Infect. Immun. 57, 3123–3130.

    PubMed  CAS  Google Scholar 

  47. Salim, K., Haedens, V., Content, J., Leblon, G., and Huygen, K. (1997) Heterologous expression of the Mycobacterium tuberculosis gene encoding antigen 85A in Corynebacterium glutamicum. Appl. Environ. Microbiol. 63, 4392–4400.

    PubMed  CAS  Google Scholar 

  48. Launois, P., DeLeys, R., Niang, M. N., Drowart, A., Andrien, M., Dierckx, P., et al. (1994) T-cell-epitope mapping of the major secreted mycobacterial antigen Ag85A in tuberculosis and leprosy. Infect. Immun. 62, 3679–3687.

    PubMed  CAS  Google Scholar 

  49. Radford, A. J., Hodgson, A. L., Rothel, J. S., and Wood, P. R. (1991) Cloning and sequencing of the ovine gamma-interferon gene. Aust. Vet. J. 68, 82–84.

    Article  PubMed  CAS  Google Scholar 

  50. Billman-Jacobe, H., Hodgson, A. L., Lightowlers, M., Wood, P. R., and Radford, A. J. (1994) Expression of ovine gamma interferon in Escherichia coli and Corynebacterium glutamicum. Appl. Environ. Microbiol. 60, 1641–1645.

    PubMed  CAS  Google Scholar 

  51. Booth, R. J., Harris, D. P., Love, J. M., and Watson, J. D. (1988) Antigenic proteins of Mycobacterium leprae. Complete sequence of the gene for the 18-kDa protein. J. Immunol. 140, 597–601.

    PubMed  CAS  Google Scholar 

  52. Gosalbes, M. J., Esteban, C. D., Galán, J. L., and Pérez-MartÍnez, G. (2000) Integrative food-grade expression system based on the lactose regulon of Lactobacillus casei. Appl. Environ. Microbiol. 66, 4822–4828.

    Article  PubMed  CAS  Google Scholar 

  53. MartÍn, M. C., Alonso, J. C., Suárez, J. E., and Álvarez, M. A. (2000) Generation of food-grade recombinant lactic acid bacterium strains by site-specific recombination. Appl. Environ. Microbiol. 66, 2599–2604.

    Article  PubMed  Google Scholar 

  54. Pisabarro, A., Correia, A., and MartÍn, J. F. (1998) Characterization of the rrnB operon of the plant pathogen Rhodococcus fascians and targeted integrations of exogenous genes at rrn loci. Appl. Environ. Microbiol. 64, 1276–1282.

    PubMed  CAS  Google Scholar 

  55. Reyes, O., Guyonvarch, A., Bonamy, C., Salti, V., David, F., and Leblon, G. (1991) “Integron”-bearing vectors: a method suitable for stable chromosomal integration in highly restrictive corynebacteria. Gene 107, 61–68.

    Article  PubMed  CAS  Google Scholar 

  56. Mateos, L. M., Schafer, A., Kalinowski, J., MartÍn, J. E, and Puhler, A. (1996) Integration of narrow-host-range vectors from Escherichia coli into the genomes of amino acid-producing corynebacteria after intergeneric conjugation. J. Bacteriol. 178, 5768–5775.

    PubMed  CAS  Google Scholar 

  57. Honrubia, M. P., Fernández, E J., and Gil, J. A. (1998) Identification, characterization, and chromosomal organization of theftsZ gene from Brevibacterium lactofermentum. Mol. Gen. Genet. 259, 97–104.

    Article  PubMed  CAS  Google Scholar 

  58. Honrubia, M. P., Ramos, A., and Gil, J. A. (2001) The cell division genes.ftg Q and ftsZ, but not the three downstream open reading frames YFIH, ORF5 and ORF6, are essential for growth and viability in Brevibacterium lactofermentum ATCC 13869. Mol. Genet. Genomics 265, 1022–1030.

    Article  PubMed  CAS  Google Scholar 

  59. Hanahan, D. (1983) Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166, 557–580.

    Article  PubMed  CAS  Google Scholar 

  60. Miller, J. H. (1972) Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  61. Kieser, T., Bibb, M. J., Buttner, M. J., Chen, B. E, and Hopwood, D. A. (2000) Practical Streptomyces genetics. The John Innes Foundation, Norwich.

    Google Scholar 

  62. Southern, E. M. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503–517.

    Article  PubMed  CAS  Google Scholar 

  63. Campbell, G. L. and Bedford, M. R. (1992) Enzyme applications for monogastric feeds: a review. Can. J. Anim. Sci. 72, 449–466.

    Article  CAS  Google Scholar 

  64. Fernández-González, C., Gil, J. A., Mateos, L. M., Schwarzer, A., Schafer, A., Kalinowski, J., Puhler, A., and MartÍn, J. E (1996) Construction of L-lysine-over-producing strains of Brevibacterium lactofermentum by targeted disruption of the hom and thrB genes. Appl. Microbiol. Biotechnol. 46, 554–558.

    Article  PubMed  Google Scholar 

  65. Teather, R. M. and Wood, P. J. (1982) Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43, 777–780.

    PubMed  CAS  Google Scholar 

  66. Jeong, K. J., Park, I. Y., Kim, M. S., and Kim, S. C. (1998) High-level expression of an endoxylanase gene from Bacillus sp. in Bacillus subtilis DB104 for the production of xylobiose from xylan. Appl. Microbiol. Biotechnol. 50, 113–118.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Gil, J.A., Ramos, A., Adham, S.A.I., Valbuena, N., Letek, M., Mateos, L.M. (2005). Food-Grade Corynebacteria for Enzyme Production. In: Barredo, J.L. (eds) Microbial Enzymes and Biotransformations. Methods in Biotechnology, vol 17. Humana Press. https://doi.org/10.1385/1-59259-846-3:115

Download citation

  • DOI: https://doi.org/10.1385/1-59259-846-3:115

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-253-7

  • Online ISBN: 978-1-59259-846-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics