Skip to main content

Microbial Cells and Enzymes A Century of Progress

  • Protocol

Part of the book series: Methods in Biotechnology ((MIBT,volume 17))

Abstract

Over the last century, microorganisms have been a great source of metabolic and enzymatic diversity. In recent years, emerging recombinant DNA techniques have facilitated the development of new efficient expression systems, modification of biosynthesis pathways leading to different metabolites by metabolic engineering, and enhancement of catalytic properties of enzymes by directed evolution. More exciting advances are still to come as the complete sequencing of industrially important microbial genomes takes place. Functional genomics and proteomics are already major tools used in the search for new molecules and development of higher-producing strains.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Tani Y., Lim W. J., and Yang, H. C. (1988) Isolation of L-methionine-enriched mutant ofa methylotrophic yeast, Candidi boidinii No. 2201. J. Ferm. Technol. 66, 153–158.

    Article  CAS  Google Scholar 

  2. Nelis H. J. and De Leenheer, A. P. (1991) Microbial sources of carotenoid pigments usedin foods and feeds. J. Appl. Bacteriol. 70, 181–191.

    CAS  Google Scholar 

  3. Torget R., Kim J., and Lee, Y. Y. (2000) Fundamental aspects of dilute acidhydrolysis/fractionation kinetics of hardwood carbohydrates. 1. Cellulose hydrolysis. Ind.Eng. Chem. Res. 39, 2817–2825.

    Article  CAS  Google Scholar 

  4. Demain A. L. (2000) Microbial biotechnology. Trends Biotechnol. 18, 26–31.

    Article  PubMed  CAS  Google Scholar 

  5. Demain, A. L. (1996) Fungal secondary metabolism: regulation and functions, in ACentury of Mycology (Sutton, B., ed.), Cambridge University Press, Cambridge, MA, pp.233–254.

    Google Scholar 

  6. Strohl, W. R. (1997) Industrial antibiotics: today and the future, in Biotechnology ofAntibiotics, 2nd ed. (Strohl, W. R., ed.), Marcel Dekker, New York, pp. 1–47.

    Google Scholar 

  7. Brown, A. G.,T. C., King T. 1, Hasenkamp R., and Thompson, R. H. (1976)Crystal and molecular structure of compactin: a new antifungal metabolite from Penicillium brevicompactum.J. Chem. Soc. Perkin Trans I, 1165–1170.

    Article  Google Scholar 

  8. Endo A., Kuroda M., and Tsujita, Y. (1976) ML-236B and ML-236C, new inhibitors ofcholesterolgenesis produced by Penicillium citrinin. J. Antibiot. 29, 1346–1348.

    PubMed  CAS  Google Scholar 

  9. Endo, A. (1979) K Monacolin, a new hypocholesterolemic agent produced by Monascusspecies. J. Antibiot. 32, 852–854.

    PubMed  CAS  Google Scholar 

  10. Alberts A. W., Chen J., Kuron G., Hunt V., Huff J., Hoffman, C., et al. (1980)Mevinolin: A highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme Areductase and a cholesterol-lowering agent. Proc. Natl. Acad. Sci. USA 77, 3957–3961.

    Article  PubMed  CAS  Google Scholar 

  11. Wall, M. E. and Wani, M. C. (1995) Campothecin and Taxol: discovery to clinic. CancerRes. 55, 753–760.

    CAS  Google Scholar 

  12. Stierle A., Strobel G., and Stierle, D. (1993) Taxol and taxane production by Taxomycesandreanae, an endophytic fungus of Pacific yew. Science 260, 214–216.

    Article  PubMed  CAS  Google Scholar 

  13. Yamada H., Shimizu S., and Kobayashi, M. (2001) Hydratases involved in nitrile conversion:screening, characterization and application. Chem. Rec. 1, 152–161.

    Article  PubMed  CAS  Google Scholar 

  14. Thomas S. M., DiCosimo R., and Nagarajan, V. (2002) Biocatalysis: applications andpotentials for the chemical industry. Trends Biotechnol. 20, 238–242.

    Article  PubMed  CAS  Google Scholar 

  15. Stroh, W. H. (1998) Industrial enzymes market. Gen. Eng. News 18, 11–38.

    Google Scholar 

  16. Rao M. B., Tanksale A. M., Ghatge M. S., and Deshpande, V. V. (1998) Molecular andbiotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62, 597–635.

    PubMed  CAS  Google Scholar 

  17. Tzanov T., Calafell M., Guebitz G. M., and Cavaco-Paulo, A. (2001) Bio-preparation ofcotton fabrics. Enzyme Microb. Technol. 29, 357–362.

    Article  CAS  Google Scholar 

  18. Farrell R. L., Hata K., and Wall, M. B. (1997) Solving pitch problems in pulp and paperprocesses by the use of enzymes or fungi. Adv. Biochem. Eng. Biotechnol. 57, 197–212.

    CAS  Google Scholar 

  19. Koeller K. M. and Wong, C. H. (2001) Enzymes for chemical synthesis. Nature 409,232–240.

    Article  PubMed  CAS  Google Scholar 

  20. Klibanov, A. (2001) Improving enzymes by using them in organic solvents. Nature 409,241–246.

    Article  PubMed  CAS  Google Scholar 

  21. Kirchner G., Scollar M. P., and Klibanov, A. (1995) Resolution of racemic mixtures vialipase catalysis in organic solvents. J. Am. Chem. Soc. 107, 7072–7076.

    Article  Google Scholar 

  22. Zaks A. and Dodds, D. R. (1997) Application of biocatalysis and biotransformations tothe synthesis of pharmaceuticals. Drug Disc. Today 2, 513–531.

    Article  CAS  Google Scholar 

  23. Carrea G. and Riva, S. (2000) Properties and synthetic applications of enzymes in organicsolvents. Angew. Chem. 33, 2226–2254.

    Google Scholar 

  24. Lee M. Y. and Dordick, J. S. (2002) Enzyme activation for nonaqueous media. Curr.Opin. Biotechnol. 13, 376–384.

    Article  PubMed  CAS  Google Scholar 

  25. Kirk O., Borchert T. V., and Fulgsang, C. C. (2002) Industrial enzyme applications. Curr.Opin. Biotechnol. 13,345–351.

    Article  PubMed  CAS  Google Scholar 

  26. Swartz, J. R. (1996) Escherichia coli recombinant DNA technology, in Escherichia coliand Salmonella: Cellular and Molecular Biology, 2nd ed. (Neidhardt, F. C., ed.)American Society of Microbiology Press, Washington, DC, pp. 1693–1771.

    Google Scholar 

  27. He X. S., Shyu Y. T., Nathoo S., Wong S. L., and Doi, R. H. (1991) Construction anduse of a Bacillus subtilis mutant deficient in multiple protease genes for the expression ofeukaryotic genes. Ann. NY Acad. Sci. 646, 69–77.

    Article  PubMed  CAS  Google Scholar 

  28. Romanos M. A., Scorer C. A., and Clare, J. J. (1992) Foreign gene expression in yeast: areview. Yeast 8,423–4188.

    Article  PubMed  CAS  Google Scholar 

  29. Higgins D. R. and Cregg, J. M. (1998) Introduction to Pichia pastoris, in PichiaProtocols (Higgins D. R. and Cregg, J. M., eds.), Humana Press, Totowa, NJ, pp. 1–15.

    Google Scholar 

  30. Bretthauer R. K. and Castellino, R J. (1999) Glycosylation of Pichia pastoris-derivedproteins. Biotechnol. Appl. Biochem. 30, 193–200.

    PubMed  CAS  Google Scholar 

  31. Romanos M. A. (1995) Advances in the use of Pichia pastoris for high-level expression.Curr. Opin. Biotechnol. 6, 527–533.

    Article  CAS  Google Scholar 

  32. Sohn J. H., Kang H. A., Rao K. J., Kim C. H., Choi E. S., Chung B. H., and Rhee S.K. (2001) Current status of the anticoagulant hirudin: its biotechnological production andclinical practice. Appl. Microbiol. Biotechnol. 57, 606–613.

    Article  PubMed  CAS  Google Scholar 

  33. Giuseppin M., van Eijk H. M., and Bes B. C. (1988) Molecular regulation of methanoloxidase activity in continuous cultures of Hansenula polymorpha. Biotechnol. Bioeng. 32,577–583.

    Article  PubMed  CAS  Google Scholar 

  34. Egli T., van Dijken J. P., Veenhuis M., Harder W., and Feichter, A. (1980) Methanolmetabolism in yeasts: regulation of the synthesis of catabolite enzymes. Arch. Microbiol. 124,115–121.

    Article  CAS  Google Scholar 

  35. Shuster J. R. and Connelley M. B. (1999) Promoter-tagged restriction enzyme-mediatedinsertion mutagenesis in Aspergillus niger. Mol. Gen. Genet. 262, 27–34.

    PubMed  CAS  Google Scholar 

  36. Gouka R. J., Gerk C., Hooykaas P. J. J., Bundock P., Musters W., Verrips C. T., and deGroot M. J. A. 1999) Transformation of Aspergillus awamori by Agrobacterium tumefa-ciens-mediated homologous recombination. Nat. Biotechnol. 6, 598–601.

    Google Scholar 

  37. van de Hombergh, J. P. van de Vondervoort, P. J., van der Heijden, N. C., and Visser, J.(1997) New protease mutants in Aspergillus niger result in strongly reduced in vitrodegradation of target proteins; genetical and biochemical characterization of seven complementationgroups. Curr. Genet. 28, 299–308.

    Article  Google Scholar 

  38. Gouka R. J., Punt P. J., and van den Hondel, C. A. M. J. J. (1997) Efficient production ofsecreted proteins by Aspergillus: progress, limitations and prospects. Appl. Microbiol.Biotechnol. 47, 1–11.

    Article  PubMed  CAS  Google Scholar 

  39. Moralejo E J., Cardoza R. E., Gutierrez S., and MartÍn, J. F. (1999) Thaumatin productionin Aspergillus awamori by use of expression cassettes with strong fungal promotersand high gene dosage. Appl. Environ. Microbiol. 65, 1168–1174.

    PubMed  CAS  Google Scholar 

  40. Ward P., Cunningham G. A., and Conneelly O. M. (1997) Commercial production oflactoferrin, a multifunctional iron-binding glycoprotein. Biotechnol. Genet. Eng. Rev. 14,303–319.

    PubMed  CAS  Google Scholar 

  41. Dunn-Coleman N. S., Bloebaum P., Berka R., Bodie E., Robinson N., Armstrong G.,et al. (1991) Commercial levels of chymosin production by Aspergillus. Bio/Technology 9,976–981.

    Article  PubMed  CAS  Google Scholar 

  42. Datamonitor. (2000) Therapeutic Proteins, Key Markets and Future Strategies. Referencecode DMHC1552, Datamonitor Publications, New York, NY, p. 33.

    Google Scholar 

  43. Green B. A. and Baker, S. M. (2002) Recent advances and novel strategies in vaccinedevelopment. Curr. Opin. Microbiol. 5, 483–488.

    Article  PubMed  Google Scholar 

  44. Brown, K. S. (1996) Looking back at Jenner, vaccine developers prepare for 21st century.The Scientist 10 (April 1), 14,17.

    Google Scholar 

  45. Pramik, M. J. (1999) Recombinant human growth hormone. Gen. Eng. News 19(1),15,27,32,33.

    Google Scholar 

  46. Stephanopoulos G., Aristodou A., and Nielsen, J. (eds.) (1998) Metabolic Engineering. Academic, San Diego, CA.

    Google Scholar 

  47. Ostergaard S., Olsson L., and Nielsen, J. (2000) Metabolic engineering ofSaccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 64, 34–50.

    Article  PubMed  CAS  Google Scholar 

  48. Rohlin L., Oh, M. K., and Liao J. C. (2001) Microbial pathway engineering for industrialprocesses: evolution, combinatorial biosynthesis and rational design. Curr. Opin.Microbiol. 4, 350–355.

    Article  Google Scholar 

  49. Bongaerts J., Kramer M., Muller U., Raeven L., and Wubbolts M. (2001) Metabolicengineering for microbial production of aromatic amino acids and derived compounds.Metab. Eng. 3, 289–300.

    Article  PubMed  CAS  Google Scholar 

  50. Mielenz J. R. (2001) Ethanol production from biomass: technology and commercializationstatus. Curr. Opin. Microbiol. 4, 324–329.

    Article  PubMed  CAS  Google Scholar 

  51. Ingram L. O., Conway T., Clark D. P., Sewell G. W., and Preston, J. R (1987) Geneticengineering of ethanol production in Escherichia coli. Appl. Environ. Microbiol. 53,2420–2425.

    PubMed  CAS  Google Scholar 

  52. Lynd, L. (1996) Overview and evaluation of fuel ethanol from cellulosic biomass: technology,economics and policy. Ann. Rev. Energy Environ. 21, 403–465.

    Article  Google Scholar 

  53. Eggeling L. and Sahm H. (1999) Amino acid production: principles of metabolic engineering,in Metabolic Engineering (Lee S. Y. and Papoutsakis, E. T., eds.), MarcelDekker, New York, pp. 153–176.

    Google Scholar 

  54. Shibasaki T., Hashimoto S., Mori H., and Ozaki, A. (2000) Construction of a novelhydroxyproline-producing recombinant Escherichia coli by introducing a proline 4-hydroxylase gene. J. Biosci. Bioeng. 90, 522–525.

    PubMed  CAS  Google Scholar 

  55. Weikert C., Sauer U., and Bailey, J. E. (1998) Increased phenylalanine production bygrowing and nongrowing Escherichia coli strain CWML2. Biotechnol. Prog. 14, 420–424.

    Article  PubMed  CAS  Google Scholar 

  56. Ikeda M. and Katsumata, R. (1999) Hyperproduction of tryptophan by Corynebacteriumglutamicum with the modified pentose phosphate pathway. Appl. Environ. Microbiol. 65,2497–2502.

    PubMed  CAS  Google Scholar 

  57. Levy-Schil S., Debussche L., Rigault S., Soubrier F., Bacchette F., Lagneaux D., et al.(1993) Biotin biosyntheric pathway in a recombinant strain of Escherichia coli overex-pressingbio genes: evidence for a limiting step upstream from KAPA. Appl. Microbiol.Biotechnol. 38, 755–762.

    Article  CAS  Google Scholar 

  58. Sakurai N., Imai Y., Masuda M., Komatsubara S., and Tosa T. (1994) Improvement of a d-biotin-hyperproducingrecombinant strain of Serratia marcescens. J. Biotechnol. 36, 63–73.

    Article  PubMed  CAS  Google Scholar 

  59. Masuda M., Takahashi K., Sakurai N., Yanagiya K., Komatsubara S., and Tosa T.(1995) Further improvement of D-biotin production by a recombinant strain of Serratiamarcescens. Proc. Biochem. 30, 553–562.

    CAS  Google Scholar 

  60. Saito Y., Ishii Y., Hayashi H., Imao Y., Akashi T., Yoshikawa K., et al. (1997) Cloningof genes coding for L-sorbose and L-sorbosone dehydrogenases from Gluconobacter oxy-dansand microbial production of 2-keto-L-gulonate, a precursor of L-ascorbic acid, in arecombinant Gluconobacter oxydans strain. Appl. Environ. Microbiol. 63,454–460.

    PubMed  CAS  Google Scholar 

  61. Shibata T., Ichikawa C., Matsuura M., Takata Y., Noguchi Y., Saito Y., and Yamashita, M. (2000) Cloning of a gene for D-sorbitol dehydrogenase from Gluconobacter oxydansG624 and expression of the gene in Pseudomonas putida IFO3738. J. Biosci. Bioeng. 89,463–468.

    Article  PubMed  CAS  Google Scholar 

  62. Koizumi S., Yonetani Y., Maruyama A., and Teshiba, S. (2000) Production of riboflavinby metabolically engineered Corynebacterium ammoniagenes. Appl. Microbiol.Biotechnol. 51, 674–679.

    Article  Google Scholar 

  63. Perkins J. B., Sloma A., Hermann T., Theriault K., Zachgo E., Erdenberger, T., et al.(1999) Genetic engineering of Bacillus subtilis for the commercial production ofriboflavin. J. Ind. Microbiol. Biotechnol. 22, 8–18.

    Article  CAS  Google Scholar 

  64. Chen C. W., Lin H. R, Kuo C. L., Tsai H. L., and Tsai J. R Y. (1988) Cloning and expressionof a DNA sequence conferring cephamycin C production. Bio/Technology 6,1222–1224.

    Article  CAS  Google Scholar 

  65. Decker H., Summers R. G., and Hutchinson, C. R. (1994) Overproduction of the acylcarrier protein component of a type II polyketide synthase stimulates production of tetra-cenomycinbiosynthetic intermediates in Streptomyces glaucescens. J. Antibiot. 47, 54–63.

    PubMed  CAS  Google Scholar 

  66. Malmberg L.-H., Hu W.-S., and Sherman D. H. (1995) Effects of enhanced lysine ε-aminotransferaseon cephamycin biosynthesis in Streptomyces clavuligerus. Appl.Microbiol. Biotechnol. 44, 198–205.

    Article  PubMed  CAS  Google Scholar 

  67. Kennedy J. and Turner, G. (1996) δ-L-α-aminoadipyl-L-cysteinyl-D-valine synthetase isa rate limiting enzyme for penicillin production in Aspergillus nidulans. Mol. Gen. Genet.253, 189–197.

    Article  PubMed  CAS  Google Scholar 

  68. Crawford L., Stepan A. M., McAda P. C., Rambosek J. A., Conder M. J., Vinci V. A.,and Reeves C. D. (1995) Production of cephalosporin intermediates by feeding adipicacid to recombinant Penicillium chrysogenum strains expressing ring expansion activity.Bio/Technology 13, 58–62.

    Article  PubMed  CAS  Google Scholar 

  69. Velasco J., Adrio J. L., Moreno M. A., Diez B., Soler G., and Barredo J. L. (2000)Environmentally safe production of 7-aminodeacetoxycephalosporanic acid (7-ADCA)using recombinant strains of Acremonium chrysogenum. Nat. Biotechnol. 18, 857–861.

    Article  PubMed  CAS  Google Scholar 

  70. Rodriguez E. and McDaniel, R. (2001) Combinatorial biosynthesis of antimicrobials andother natural products. Curr. Opin. Microbiol. 4, 526–534.

    Article  PubMed  CAS  Google Scholar 

  71. Mendez C. and Salas, J. A. (2001) Altering the glycosylation pattern of bioactive compounds.Trends Biotechnol. 19, 449–456.

    Article  PubMed  CAS  Google Scholar 

  72. Okanishi M., Suzuki N., and Furita, T. (1996) Variety of hybrid characters amongrecombinants obtained by interspecific protoplast fusion in streptomycetes. Biosci.Biotech. Biochem. 6, 1233–1238.

    Article  Google Scholar 

  73. Bodie E. A., Armstrong G. L., and Dunn-Coleman, N. S. (1994) Strain improvement ofchymosin-producing strains of Aspergillus nigervar awamori using parasexual recombination.Enzyme Microb. Tech. 16, 376–382.

    Article  CAS  Google Scholar 

  74. Pariza M. W. and Johnson, E. A. (2001) Evaluating the safety of microbial enzyme preparationsused in food processing: update for a new century. Regul. Toxicol. Pharmacol. 33,173–186.

    Article  PubMed  CAS  Google Scholar 

  75. Kirk O., Borchert T. V., and Fuglsang, C. C. (2002) Industrial enzyme applications. Curr.Opin. Biotechnol. 13,345–351.

    Article  PubMed  CAS  Google Scholar 

  76. Rondon M. R., Goodman R. M., and Handelsman, J. (1999) The earth’s bounty: assessingand accessing soil microbial diversity. Trends Biotechnol. 17,403–409.

    Article  PubMed  CAS  Google Scholar 

  77. Schiraldini C. and De Rosa, M. (2002) The production of biocatalysts and biomoleculesfrom extremophiles. Trends Biotechnol. 20, 515–521.

    Article  Google Scholar 

  78. Marrs B., Delagrave S., and Murphy, D. (1999) Novel approaches for discovering industrialenzymes. Curr. Opin. Microbiol. 2, 241–245.

    Article  PubMed  CAS  Google Scholar 

  79. Schmid A., Dordick J. S., Hauer B., Kiener A., Wubbolts M., and Witholt, B. (2001)Industrial biocatalysis today and tomorrow. Nature 409, 258–268.

    Article  PubMed  CAS  Google Scholar 

  80. Cedrone F., Menez A., and Quemeneur, E. (2000) Tailoring new enzyme functions byrational redesign. Curr. Opin. Struct. Biol. 10, 405–410.

    Article  PubMed  CAS  Google Scholar 

  81. Beppu, T. (1990) Modification of milk-clotting aspartic proteinases by recombinant DNAtechniques. Ann. NYAcad. Sci. 613, 14–25.

    Article  CAS  Google Scholar 

  82. Van den Burg B., de Kreij A., Van der Veek P., Mansfeld J., and Venema G. (1998)Engineering an enzyme to resist boiling. Proc. Natl. Acad. Sci. USA 95, 2056–2060.

    Article  PubMed  Google Scholar 

  83. Bolon D. N., Voigt C. A., and Mayo S. L. (2002) De novo design of biocatalysts. Curr.Opin. Struct. Biol. 6, 125–129.

    CAS  Google Scholar 

  84. Shimaoka M., Shiftman J. M., Jing H., Tagaki J., Mayo S. L., and Springer T. A.(2000) Computational design of an integrin I domain stabilized in the open high affinityconformation. Nat. Struct. Biol. 7, 674–678.

    Article  PubMed  CAS  Google Scholar 

  85. Arnold R H. (2001) Combinatorial and computational challenges for biocatalyst design.Nature 409, 253–257.

    Article  PubMed  CAS  Google Scholar 

  86. Leung D. W., Chen E., and Goeddel D. V. (1989) A method for random mutagenesis ofa defined DNA segment using a modified polymerase chain reaction. Technique 1, 11–15.

    Google Scholar 

  87. Reidhaar-Olson J., Bowie J., Breyer R. M., Hu J. C., Knight K. L., Lim W. A., et al.(1991) Random mutagenesis of protein sequences using oligonucleotide cassettes.Methods Enzymol. 208, 564–586.

    Article  PubMed  CAS  Google Scholar 

  88. Bornscheuer U. T., Altenbuchner J., and Meyer, H. H. (1998) Directed evolution of anesterase for the stereoselective resolution of a key intermediate in the synthesis of epith-ilones. Biotechnol. Bioeng. 58, 554–559.

    Article  PubMed  CAS  Google Scholar 

  89. Taguchi S., Ozaki A., and Momose, H. (1998) Engineering of a cold-adapted protease bysequential random mutagenesis and a screening system. Appl. Environ. Microbiol. 64,492–495.

    PubMed  CAS  Google Scholar 

  90. Ness J. E., Del Cardayre S. B., Minshull J., and Stemmer W. P. (2000) Molecularbreeding: the natural approach to protein design. Adv. Protein Chem. 55, 261–292.

    PubMed  CAS  Google Scholar 

  91. Stemmer W. P. (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370,389–391.

    Article  PubMed  CAS  Google Scholar 

  92. Zhao H. and Arnold, E H. (1997) Optimization of DNA shuffling for high fidelity recombination.Nucleic Acids Res. 25, 1307–1308.

    Article  PubMed  CAS  Google Scholar 

  93. Crameri A., Raillard S. A., Bermudez E., and Stemmer W. P. (1998) DNA shuffling of afamily of genes from diverse species accelerates directed evolution. Nature 391, 288–291.

    Article  PubMed  CAS  Google Scholar 

  94. Kurtzman A. L., Govindarajan S., Vahle K., Jones J. T., Heinrichs V., and Patten, P. A.(2001) Advances in directed protein evolution by recursive genetic recombination: applicationsto therapeutic proteins. Curr. Opin. Biotechnol. 12, 361–370.

    Article  PubMed  CAS  Google Scholar 

  95. Lutz S., Ostermeier M., Moore G. L., Maranas C. D., and Benkovic S. P. (2001)Creating multiple-crossover DNA libraries independent of sequence identity. Proc. Natl.Acad. Sci. USA 98, 11,248–11,253.

    Article  PubMed  CAS  Google Scholar 

  96. Ness J. E., Welch M., Giver L., Bueno M., Cherry J. R., Borchert T. V., et al. (1999)DNA shuffling of subgenomic sequences of subtilisin. Nat. Biotechnol. 17, 893–896.

    Article  PubMed  CAS  Google Scholar 

  97. Jaeger K. E. and Reetz, M. T. (2000) Directed evolution of enantioselective enzymes fororganic chemistry. Curr. Opin. Chem. Biol. 4, 68–73.

    Article  PubMed  CAS  Google Scholar 

  98. Suenaga H., Mitsokua M., Ura Y., Watanabe T., and Furukawa, K. (2001) Directed evolutionof biphenyl dioxygenase: emergence of enhanced degradation capacity for benzene,toluene, and alkylbenzenes. J. Bacteriol. 183, 5441–5444.

    Article  PubMed  CAS  Google Scholar 

  99. Song J. K. and Rhee, J. S. (2001) Enhancement of stability and activity of phospholipaseA(1) in organic solvents by directed evolution. Biochim. Biophys. Acta 1547, 370–378.

    Article  PubMed  CAS  Google Scholar 

  100. Raillard S., Krebber A., Chen Y., Ness J. E., Bermudez E., Trinidad R., et al. (2001)Novel enzyme activities and functional plasticity revealed by recombining highly homologousenzymes. Chem. Biol. 8, 891–898.

    Article  PubMed  CAS  Google Scholar 

  101. Patten P. A., Howard R. J., and Stemmer W. P. (1997) Applications of DNA shuffling topharmaceuticals and vaccines. Curr. Opin. Biotechnol. 8, 724–733.

    Article  PubMed  CAS  Google Scholar 

  102. Tobin M. B., Gustafsson C., and Huisman, G. W. (2000) Directed evolution: the “rational”basis for “irrational” design. Curr. Opin. Struct. Biol. 10, 421–427.

    Article  PubMed  CAS  Google Scholar 

  103. Zhang Y. X., Perry K., Vinci V. A., Powell K., Stemmer W. P., and del Cardayre, S. B.(2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415,644–646.

    Article  PubMed  CAS  Google Scholar 

  104. Patnaik R., Louie S., Gavrilovic V., Perry K., Stemmer W. P., Ryan C. M., and delCardayre S. B. (2002) Genome shuffling of Lactobacillus for improved acid tolerance.Nat. Biotechnol. 20, 707–712.

    Article  PubMed  CAS  Google Scholar 

  105. Tong I.-T., Liao J. J., and Cameron D. C. (1991) 1,3-Propane diol production byEscherichia coli expressing genes from the Klebsiella pneumoniae dha region. Appl.Environ. Microbiol. 57, 3541–3546.

    PubMed  CAS  Google Scholar 

  106. Laffend L. A., Nagarajan V., and Nakamura C. E. (1996) Bioconversion of a fermentablecarbon source to 1,3-propanediol by a single microorganism. Patent WO96/53.796 (E. I. DuPont de Nemours and Genencor International).

    Google Scholar 

  107. Picataggio S., Rohrer T., Deanda K., Lanning D., Reynolds R., Mielenz J., and Eirich, L. D. (1992) Metabolic engineering of Candida tropicalis for the production of long-chaindicarboxylic acids. Bio/Technology 10, 894–898.

    Article  PubMed  CAS  Google Scholar 

  108. Arisawa A., Kawamura N., Narita T., Kojima I., Okamura K., Tsunekawa, H., et al.(1996) Direct fermentative production of acyltylosins by genetically-engineered strains ofStreptomyces fradiae. J. Antibiot. 49, 349–354.

    PubMed  CAS  Google Scholar 

  109. National Academy of Sciences U.S.A. (2000) Transgenic Plants and World Agriculture,National Academy Press, Washington, DC.

    Google Scholar 

  110. Fox, S. (2000) Golden rice intended for developing world. Gen. Eng. News 20(12), 42,50.

    Google Scholar 

  111. Bigelas, R. (1989) Industrial products of biotechnology: Application of gene technology,in Biotechnology, vol. 7b (Rehm H. J. and Reed, G. eds.; Jacobson G. K. and Jolly, S.O., vol. eds.) VCH, Weinheim, Germany, pp. 229–259.

    Google Scholar 

  112. Tseng Y. H., Ting W. Y., Chou H. C., Yang B. Y., and Chun, C. C. (1992) Increase ofxanthan production by cloning xps genes into wild-type Xanthomonas campestris. Lett.Appl. Microbiol. 14, 43–46.

    Article  PubMed  CAS  Google Scholar 

  113. Letisse F., Chevallereau P., Simon J.-L., and Lindley N. D. (2001) Kinetic analysis ofgrowth and xanthan gum production with Xanthomonas campestris on sucrose, usingsequentially consumed nitrogen sources. Appl. Microbiol. Biotechnol. 55, 417–422.

    Article  PubMed  CAS  Google Scholar 

  114. Potera, C. (1997) Genencor & DuPont create “green” polyester. Gen. Eng. News 17(11), 17.

    Google Scholar 

  115. Akkara J. A., Ayyagari M. S., and Bruno, F. F. (1999) Enzymatic synthesis and modificationof polymers in nonaqueous solvents. Trends Biotechnol. 17, 67–73.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Adrio, J.L., Demain, A.L. (2005). Microbial Cells and Enzymes A Century of Progress. In: Barredo, J.L. (eds) Microbial Enzymes and Biotransformations. Methods in Biotechnology, vol 17. Humana Press. https://doi.org/10.1385/1-59259-846-3:001

Download citation

  • DOI: https://doi.org/10.1385/1-59259-846-3:001

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-253-7

  • Online ISBN: 978-1-59259-846-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics