Microbial Cells and Enzymes A Century of Progress

  • José L. Adrio
  • Arnold L. Demain
Part of the Methods in Biotechnology book series (MIBT, volume 17)

Abstract

Over the last century, microorganisms have been a great source of metabolic and enzymatic diversity. In recent years, emerging recombinant DNA techniques have facilitated the development of new efficient expression systems, modification of biosynthesis pathways leading to different metabolites by metabolic engineering, and enhancement of catalytic properties of enzymes by directed evolution. More exciting advances are still to come as the complete sequencing of industrially important microbial genomes takes place. Functional genomics and proteomics are already major tools used in the search for new molecules and development of higher-producing strains.

Key Words

Primary metabolites secondary metabolites bioconversions enzymes hosts biopharmaceuticals metabolic engineering agriculture polymers 

References

  1. 1.
    Tani Y., Lim W. J., and Yang, H. C. (1988) Isolation of L-methionine-enriched mutant ofa methylotrophic yeast, Candidi boidinii No. 2201. J. Ferm. Technol. 66, 153–158.CrossRefGoogle Scholar
  2. 2.
    Nelis H. J. and De Leenheer, A. P. (1991) Microbial sources of carotenoid pigments usedin foods and feeds. J. Appl. Bacteriol. 70, 181–191.Google Scholar
  3. 3.
    Torget R., Kim J., and Lee, Y. Y. (2000) Fundamental aspects of dilute acidhydrolysis/fractionation kinetics of hardwood carbohydrates. 1. Cellulose hydrolysis. Ind.Eng. Chem. Res. 39, 2817–2825.CrossRefGoogle Scholar
  4. 4.
    Demain A. L. (2000) Microbial biotechnology. Trends Biotechnol. 18, 26–31.PubMedCrossRefGoogle Scholar
  5. 5.
    Demain, A. L. (1996) Fungal secondary metabolism: regulation and functions, in ACentury of Mycology (Sutton, B., ed.), Cambridge University Press, Cambridge, MA, pp.233–254.Google Scholar
  6. 6.
    Strohl, W. R. (1997) Industrial antibiotics: today and the future, in Biotechnology ofAntibiotics, 2nd ed. (Strohl, W. R., ed.), Marcel Dekker, New York, pp. 1–47.Google Scholar
  7. 7.
    Brown, A. G.,T. C., King T. 1, Hasenkamp R., and Thompson, R. H. (1976)Crystal and molecular structure of compactin: a new antifungal metabolite from Penicillium brevicompactum.J. Chem. Soc. Perkin Trans I, 1165–1170.CrossRefGoogle Scholar
  8. 8.
    Endo A., Kuroda M., and Tsujita, Y. (1976) ML-236B and ML-236C, new inhibitors ofcholesterolgenesis produced by Penicillium citrinin. J. Antibiot. 29, 1346–1348.PubMedGoogle Scholar
  9. 9.
    Endo, A. (1979) K Monacolin, a new hypocholesterolemic agent produced by Monascusspecies. J. Antibiot. 32, 852–854.PubMedGoogle Scholar
  10. 10.
    Alberts A. W., Chen J., Kuron G., Hunt V., Huff J., Hoffman, C., et al. (1980)Mevinolin: A highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme Areductase and a cholesterol-lowering agent. Proc. Natl. Acad. Sci. USA 77, 3957–3961.PubMedCrossRefGoogle Scholar
  11. 11.
    Wall, M. E. and Wani, M. C. (1995) Campothecin and Taxol: discovery to clinic. CancerRes. 55, 753–760.Google Scholar
  12. 12.
    Stierle A., Strobel G., and Stierle, D. (1993) Taxol and taxane production by Taxomycesandreanae, an endophytic fungus of Pacific yew. Science 260, 214–216.PubMedCrossRefGoogle Scholar
  13. 13.
    Yamada H., Shimizu S., and Kobayashi, M. (2001) Hydratases involved in nitrile conversion:screening, characterization and application. Chem. Rec. 1, 152–161.PubMedCrossRefGoogle Scholar
  14. 14.
    Thomas S. M., DiCosimo R., and Nagarajan, V. (2002) Biocatalysis: applications andpotentials for the chemical industry. Trends Biotechnol. 20, 238–242.PubMedCrossRefGoogle Scholar
  15. 15.
    Stroh, W. H. (1998) Industrial enzymes market. Gen. Eng. News 18, 11–38.Google Scholar
  16. 16.
    Rao M. B., Tanksale A. M., Ghatge M. S., and Deshpande, V. V. (1998) Molecular andbiotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62, 597–635.PubMedGoogle Scholar
  17. 17.
    Tzanov T., Calafell M., Guebitz G. M., and Cavaco-Paulo, A. (2001) Bio-preparation ofcotton fabrics. Enzyme Microb. Technol. 29, 357–362.CrossRefGoogle Scholar
  18. 18.
    Farrell R. L., Hata K., and Wall, M. B. (1997) Solving pitch problems in pulp and paperprocesses by the use of enzymes or fungi. Adv. Biochem. Eng. Biotechnol. 57, 197–212.Google Scholar
  19. 19.
    Koeller K. M. and Wong, C. H. (2001) Enzymes for chemical synthesis. Nature 409,232–240.PubMedCrossRefGoogle Scholar
  20. 20.
    Klibanov, A. (2001) Improving enzymes by using them in organic solvents. Nature 409,241–246.PubMedCrossRefGoogle Scholar
  21. 21.
    Kirchner G., Scollar M. P., and Klibanov, A. (1995) Resolution of racemic mixtures vialipase catalysis in organic solvents. J. Am. Chem. Soc. 107, 7072–7076.CrossRefGoogle Scholar
  22. 22.
    Zaks A. and Dodds, D. R. (1997) Application of biocatalysis and biotransformations tothe synthesis of pharmaceuticals. Drug Disc. Today 2, 513–531.CrossRefGoogle Scholar
  23. 23.
    Carrea G. and Riva, S. (2000) Properties and synthetic applications of enzymes in organicsolvents. Angew. Chem. 33, 2226–2254.Google Scholar
  24. 24.
    Lee M. Y. and Dordick, J. S. (2002) Enzyme activation for nonaqueous media. Curr.Opin. Biotechnol. 13, 376–384.PubMedCrossRefGoogle Scholar
  25. 25.
    Kirk O., Borchert T. V., and Fulgsang, C. C. (2002) Industrial enzyme applications. Curr.Opin. Biotechnol. 13,345–351.PubMedCrossRefGoogle Scholar
  26. 26.
    Swartz, J. R. (1996) Escherichia coli recombinant DNA technology, in Escherichia coliand Salmonella: Cellular and Molecular Biology, 2nd ed. (Neidhardt, F. C., ed.)American Society of Microbiology Press, Washington, DC, pp. 1693–1771.Google Scholar
  27. 27.
    He X. S., Shyu Y. T., Nathoo S., Wong S. L., and Doi, R. H. (1991) Construction anduse of a Bacillus subtilis mutant deficient in multiple protease genes for the expression ofeukaryotic genes. Ann. NY Acad. Sci. 646, 69–77.PubMedCrossRefGoogle Scholar
  28. 28.
    Romanos M. A., Scorer C. A., and Clare, J. J. (1992) Foreign gene expression in yeast: areview. Yeast 8,423–4188.PubMedCrossRefGoogle Scholar
  29. 29.
    Higgins D. R. and Cregg, J. M. (1998) Introduction to Pichia pastoris, in PichiaProtocols (Higgins D. R. and Cregg, J. M., eds.), Humana Press, Totowa, NJ, pp. 1–15.Google Scholar
  30. 30.
    Bretthauer R. K. and Castellino, R J. (1999) Glycosylation of Pichia pastoris-derivedproteins. Biotechnol. Appl. Biochem. 30, 193–200.PubMedGoogle Scholar
  31. 31.
    Romanos M. A. (1995) Advances in the use of Pichia pastoris for high-level expression.Curr. Opin. Biotechnol. 6, 527–533.CrossRefGoogle Scholar
  32. 32.
    Sohn J. H., Kang H. A., Rao K. J., Kim C. H., Choi E. S., Chung B. H., and Rhee S.K. (2001) Current status of the anticoagulant hirudin: its biotechnological production andclinical practice. Appl. Microbiol. Biotechnol. 57, 606–613.PubMedCrossRefGoogle Scholar
  33. 33.
    Giuseppin M., van Eijk H. M., and Bes B. C. (1988) Molecular regulation of methanoloxidase activity in continuous cultures of Hansenula polymorpha. Biotechnol. Bioeng. 32,577–583.PubMedCrossRefGoogle Scholar
  34. 34.
    Egli T., van Dijken J. P., Veenhuis M., Harder W., and Feichter, A. (1980) Methanolmetabolism in yeasts: regulation of the synthesis of catabolite enzymes. Arch. Microbiol. 124,115–121.CrossRefGoogle Scholar
  35. 35.
    Shuster J. R. and Connelley M. B. (1999) Promoter-tagged restriction enzyme-mediatedinsertion mutagenesis in Aspergillus niger. Mol. Gen. Genet. 262, 27–34.PubMedGoogle Scholar
  36. 36.
    Gouka R. J., Gerk C., Hooykaas P. J. J., Bundock P., Musters W., Verrips C. T., and deGroot M. J. A. 1999) Transformation of Aspergillus awamori by Agrobacterium tumefa-ciens-mediated homologous recombination. Nat. Biotechnol. 6, 598–601.Google Scholar
  37. 37.
    van de Hombergh, J. P. van de Vondervoort, P. J., van der Heijden, N. C., and Visser, J.(1997) New protease mutants in Aspergillus niger result in strongly reduced in vitrodegradation of target proteins; genetical and biochemical characterization of seven complementationgroups. Curr. Genet. 28, 299–308.CrossRefGoogle Scholar
  38. 38.
    Gouka R. J., Punt P. J., and van den Hondel, C. A. M. J. J. (1997) Efficient production ofsecreted proteins by Aspergillus: progress, limitations and prospects. Appl. Microbiol.Biotechnol. 47, 1–11.PubMedCrossRefGoogle Scholar
  39. 39.
    Moralejo E J., Cardoza R. E., Gutierrez S., and MartÍn, J. F. (1999) Thaumatin productionin Aspergillus awamori by use of expression cassettes with strong fungal promotersand high gene dosage. Appl. Environ. Microbiol. 65, 1168–1174.PubMedGoogle Scholar
  40. 40.
    Ward P., Cunningham G. A., and Conneelly O. M. (1997) Commercial production oflactoferrin, a multifunctional iron-binding glycoprotein. Biotechnol. Genet. Eng. Rev. 14,303–319.PubMedGoogle Scholar
  41. 41.
    Dunn-Coleman N. S., Bloebaum P., Berka R., Bodie E., Robinson N., Armstrong G.,et al. (1991) Commercial levels of chymosin production by Aspergillus. Bio/Technology 9,976–981.PubMedCrossRefGoogle Scholar
  42. 42.
    Datamonitor. (2000) Therapeutic Proteins, Key Markets and Future Strategies. Referencecode DMHC1552, Datamonitor Publications, New York, NY, p. 33.Google Scholar
  43. 43.
    Green B. A. and Baker, S. M. (2002) Recent advances and novel strategies in vaccinedevelopment. Curr. Opin. Microbiol. 5, 483–488.PubMedCrossRefGoogle Scholar
  44. 44.
    Brown, K. S. (1996) Looking back at Jenner, vaccine developers prepare for 21st century.The Scientist 10 (April 1), 14,17.Google Scholar
  45. 45.
    Pramik, M. J. (1999) Recombinant human growth hormone. Gen. Eng. News 19(1),15,27,32,33.Google Scholar
  46. 46.
    Stephanopoulos G., Aristodou A., and Nielsen, J. (eds.) (1998) Metabolic Engineering. Academic, San Diego, CA.Google Scholar
  47. 47.
    Ostergaard S., Olsson L., and Nielsen, J. (2000) Metabolic engineering ofSaccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 64, 34–50.PubMedCrossRefGoogle Scholar
  48. 48.
    Rohlin L., Oh, M. K., and Liao J. C. (2001) Microbial pathway engineering for industrialprocesses: evolution, combinatorial biosynthesis and rational design. Curr. Opin.Microbiol. 4, 350–355.CrossRefGoogle Scholar
  49. 49.
    Bongaerts J., Kramer M., Muller U., Raeven L., and Wubbolts M. (2001) Metabolicengineering for microbial production of aromatic amino acids and derived compounds.Metab. Eng. 3, 289–300.PubMedCrossRefGoogle Scholar
  50. 50.
    Mielenz J. R. (2001) Ethanol production from biomass: technology and commercializationstatus. Curr. Opin. Microbiol. 4, 324–329.PubMedCrossRefGoogle Scholar
  51. 51.
    Ingram L. O., Conway T., Clark D. P., Sewell G. W., and Preston, J. R (1987) Geneticengineering of ethanol production in Escherichia coli. Appl. Environ. Microbiol. 53,2420–2425.PubMedGoogle Scholar
  52. 52.
    Lynd, L. (1996) Overview and evaluation of fuel ethanol from cellulosic biomass: technology,economics and policy. Ann. Rev. Energy Environ. 21, 403–465.CrossRefGoogle Scholar
  53. 53.
    Eggeling L. and Sahm H. (1999) Amino acid production: principles of metabolic engineering,in Metabolic Engineering (Lee S. Y. and Papoutsakis, E. T., eds.), MarcelDekker, New York, pp. 153–176.Google Scholar
  54. 54.
    Shibasaki T., Hashimoto S., Mori H., and Ozaki, A. (2000) Construction of a novelhydroxyproline-producing recombinant Escherichia coli by introducing a proline 4-hydroxylase gene. J. Biosci. Bioeng. 90, 522–525.PubMedGoogle Scholar
  55. 55.
    Weikert C., Sauer U., and Bailey, J. E. (1998) Increased phenylalanine production bygrowing and nongrowing Escherichia coli strain CWML2. Biotechnol. Prog. 14, 420–424.PubMedCrossRefGoogle Scholar
  56. 56.
    Ikeda M. and Katsumata, R. (1999) Hyperproduction of tryptophan by Corynebacteriumglutamicum with the modified pentose phosphate pathway. Appl. Environ. Microbiol. 65,2497–2502.PubMedGoogle Scholar
  57. 57.
    Levy-Schil S., Debussche L., Rigault S., Soubrier F., Bacchette F., Lagneaux D., et al.(1993) Biotin biosyntheric pathway in a recombinant strain of Escherichia coli overex-pressingbio genes: evidence for a limiting step upstream from KAPA. Appl. Microbiol.Biotechnol. 38, 755–762.CrossRefGoogle Scholar
  58. 58.
    Sakurai N., Imai Y., Masuda M., Komatsubara S., and Tosa T. (1994) Improvement of a d-biotin-hyperproducingrecombinant strain of Serratia marcescens. J. Biotechnol. 36, 63–73.PubMedCrossRefGoogle Scholar
  59. 59.
    Masuda M., Takahashi K., Sakurai N., Yanagiya K., Komatsubara S., and Tosa T.(1995) Further improvement of D-biotin production by a recombinant strain of Serratiamarcescens. Proc. Biochem. 30, 553–562.Google Scholar
  60. 60.
    Saito Y., Ishii Y., Hayashi H., Imao Y., Akashi T., Yoshikawa K., et al. (1997) Cloningof genes coding for L-sorbose and L-sorbosone dehydrogenases from Gluconobacter oxy-dansand microbial production of 2-keto-L-gulonate, a precursor of L-ascorbic acid, in arecombinant Gluconobacter oxydans strain. Appl. Environ. Microbiol. 63,454–460.PubMedGoogle Scholar
  61. 61.
    Shibata T., Ichikawa C., Matsuura M., Takata Y., Noguchi Y., Saito Y., and Yamashita, M. (2000) Cloning of a gene for D-sorbitol dehydrogenase from Gluconobacter oxydansG624 and expression of the gene in Pseudomonas putida IFO3738. J. Biosci. Bioeng. 89,463–468.PubMedCrossRefGoogle Scholar
  62. 62.
    Koizumi S., Yonetani Y., Maruyama A., and Teshiba, S. (2000) Production of riboflavinby metabolically engineered Corynebacterium ammoniagenes. Appl. Microbiol.Biotechnol. 51, 674–679.CrossRefGoogle Scholar
  63. 63.
    Perkins J. B., Sloma A., Hermann T., Theriault K., Zachgo E., Erdenberger, T., et al.(1999) Genetic engineering of Bacillus subtilis for the commercial production ofriboflavin. J. Ind. Microbiol. Biotechnol. 22, 8–18.CrossRefGoogle Scholar
  64. 64.
    Chen C. W., Lin H. R, Kuo C. L., Tsai H. L., and Tsai J. R Y. (1988) Cloning and expressionof a DNA sequence conferring cephamycin C production. Bio/Technology 6,1222–1224.CrossRefGoogle Scholar
  65. 65.
    Decker H., Summers R. G., and Hutchinson, C. R. (1994) Overproduction of the acylcarrier protein component of a type II polyketide synthase stimulates production of tetra-cenomycinbiosynthetic intermediates in Streptomyces glaucescens. J. Antibiot. 47, 54–63.PubMedGoogle Scholar
  66. 66.
    Malmberg L.-H., Hu W.-S., and Sherman D. H. (1995) Effects of enhanced lysine ε-aminotransferaseon cephamycin biosynthesis in Streptomyces clavuligerus. Appl.Microbiol. Biotechnol. 44, 198–205.PubMedCrossRefGoogle Scholar
  67. 67.
    Kennedy J. and Turner, G. (1996) δ-L-α-aminoadipyl-L-cysteinyl-D-valine synthetase isa rate limiting enzyme for penicillin production in Aspergillus nidulans. Mol. Gen. Genet.253, 189–197.PubMedCrossRefGoogle Scholar
  68. 68.
    Crawford L., Stepan A. M., McAda P. C., Rambosek J. A., Conder M. J., Vinci V. A.,and Reeves C. D. (1995) Production of cephalosporin intermediates by feeding adipicacid to recombinant Penicillium chrysogenum strains expressing ring expansion activity.Bio/Technology 13, 58–62.PubMedCrossRefGoogle Scholar
  69. 69.
    Velasco J., Adrio J. L., Moreno M. A., Diez B., Soler G., and Barredo J. L. (2000)Environmentally safe production of 7-aminodeacetoxycephalosporanic acid (7-ADCA)using recombinant strains of Acremonium chrysogenum. Nat. Biotechnol. 18, 857–861.PubMedCrossRefGoogle Scholar
  70. 70.
    Rodriguez E. and McDaniel, R. (2001) Combinatorial biosynthesis of antimicrobials andother natural products. Curr. Opin. Microbiol. 4, 526–534.PubMedCrossRefGoogle Scholar
  71. 71.
    Mendez C. and Salas, J. A. (2001) Altering the glycosylation pattern of bioactive compounds.Trends Biotechnol. 19, 449–456. PubMedCrossRefGoogle Scholar
  72. 72.
    Okanishi M., Suzuki N., and Furita, T. (1996) Variety of hybrid characters amongrecombinants obtained by interspecific protoplast fusion in streptomycetes. Biosci.Biotech. Biochem. 6, 1233–1238.CrossRefGoogle Scholar
  73. 73.
    Bodie E. A., Armstrong G. L., and Dunn-Coleman, N. S. (1994) Strain improvement ofchymosin-producing strains of Aspergillus nigervar awamori using parasexual recombination.Enzyme Microb. Tech. 16, 376–382.CrossRefGoogle Scholar
  74. 74.
    Pariza M. W. and Johnson, E. A. (2001) Evaluating the safety of microbial enzyme preparationsused in food processing: update for a new century. Regul. Toxicol. Pharmacol. 33,173–186.PubMedCrossRefGoogle Scholar
  75. 75.
    Kirk O., Borchert T. V., and Fuglsang, C. C. (2002) Industrial enzyme applications. Curr.Opin. Biotechnol. 13,345–351.PubMedCrossRefGoogle Scholar
  76. 76.
    Rondon M. R., Goodman R. M., and Handelsman, J. (1999) The earth’s bounty: assessingand accessing soil microbial diversity. Trends Biotechnol. 17,403–409.PubMedCrossRefGoogle Scholar
  77. 77.
    Schiraldini C. and De Rosa, M. (2002) The production of biocatalysts and biomoleculesfrom extremophiles. Trends Biotechnol. 20, 515–521.CrossRefGoogle Scholar
  78. 78.
    Marrs B., Delagrave S., and Murphy, D. (1999) Novel approaches for discovering industrialenzymes. Curr. Opin. Microbiol. 2, 241–245.PubMedCrossRefGoogle Scholar
  79. 79.
    Schmid A., Dordick J. S., Hauer B., Kiener A., Wubbolts M., and Witholt, B. (2001)Industrial biocatalysis today and tomorrow. Nature 409, 258–268.PubMedCrossRefGoogle Scholar
  80. 80.
    Cedrone F., Menez A., and Quemeneur, E. (2000) Tailoring new enzyme functions byrational redesign. Curr. Opin. Struct. Biol. 10, 405–410.PubMedCrossRefGoogle Scholar
  81. 81.
    Beppu, T. (1990) Modification of milk-clotting aspartic proteinases by recombinant DNAtechniques. Ann. NYAcad. Sci. 613, 14–25.CrossRefGoogle Scholar
  82. 82.
    Van den Burg B., de Kreij A., Van der Veek P., Mansfeld J., and Venema G. (1998)Engineering an enzyme to resist boiling. Proc. Natl. Acad. Sci. USA 95, 2056–2060.PubMedCrossRefGoogle Scholar
  83. 83.
    Bolon D. N., Voigt C. A., and Mayo S. L. (2002) De novo design of biocatalysts. Curr.Opin. Struct. Biol. 6, 125–129.Google Scholar
  84. 84.
    Shimaoka M., Shiftman J. M., Jing H., Tagaki J., Mayo S. L., and Springer T. A.(2000) Computational design of an integrin I domain stabilized in the open high affinityconformation. Nat. Struct. Biol. 7, 674–678.PubMedCrossRefGoogle Scholar
  85. 85.
    Arnold R H. (2001) Combinatorial and computational challenges for biocatalyst design.Nature 409, 253–257.PubMedCrossRefGoogle Scholar
  86. 86.
    Leung D. W., Chen E., and Goeddel D. V. (1989) A method for random mutagenesis ofa defined DNA segment using a modified polymerase chain reaction. Technique 1, 11–15.Google Scholar
  87. 87.
    Reidhaar-Olson J., Bowie J., Breyer R. M., Hu J. C., Knight K. L., Lim W. A., et al.(1991) Random mutagenesis of protein sequences using oligonucleotide cassettes.Methods Enzymol. 208, 564–586.PubMedCrossRefGoogle Scholar
  88. 88.
    Bornscheuer U. T., Altenbuchner J., and Meyer, H. H. (1998) Directed evolution of anesterase for the stereoselective resolution of a key intermediate in the synthesis of epith-ilones. Biotechnol. Bioeng. 58, 554–559.PubMedCrossRefGoogle Scholar
  89. 89.
    Taguchi S., Ozaki A., and Momose, H. (1998) Engineering of a cold-adapted protease bysequential random mutagenesis and a screening system. Appl. Environ. Microbiol. 64,492–495.PubMedGoogle Scholar
  90. 90.
    Ness J. E., Del Cardayre S. B., Minshull J., and Stemmer W. P. (2000) Molecularbreeding: the natural approach to protein design. Adv. Protein Chem. 55, 261–292.PubMedGoogle Scholar
  91. 91.
    Stemmer W. P. (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370,389–391.PubMedCrossRefGoogle Scholar
  92. 92.
    Zhao H. and Arnold, E H. (1997) Optimization of DNA shuffling for high fidelity recombination.Nucleic Acids Res. 25, 1307–1308.PubMedCrossRefGoogle Scholar
  93. 93.
    Crameri A., Raillard S. A., Bermudez E., and Stemmer W. P. (1998) DNA shuffling of afamily of genes from diverse species accelerates directed evolution. Nature 391, 288–291.PubMedCrossRefGoogle Scholar
  94. 94.
    Kurtzman A. L., Govindarajan S., Vahle K., Jones J. T., Heinrichs V., and Patten, P. A.(2001) Advances in directed protein evolution by recursive genetic recombination: applicationsto therapeutic proteins. Curr. Opin. Biotechnol. 12, 361–370.PubMedCrossRefGoogle Scholar
  95. 95.
    Lutz S., Ostermeier M., Moore G. L., Maranas C. D., and Benkovic S. P. (2001)Creating multiple-crossover DNA libraries independent of sequence identity. Proc. Natl.Acad. Sci. USA 98, 11,248–11,253.PubMedCrossRefGoogle Scholar
  96. 96.
    Ness J. E., Welch M., Giver L., Bueno M., Cherry J. R., Borchert T. V., et al. (1999)DNA shuffling of subgenomic sequences of subtilisin. Nat. Biotechnol. 17, 893–896.PubMedCrossRefGoogle Scholar
  97. 97.
    Jaeger K. E. and Reetz, M. T. (2000) Directed evolution of enantioselective enzymes fororganic chemistry. Curr. Opin. Chem. Biol. 4, 68–73.PubMedCrossRefGoogle Scholar
  98. 98.
    Suenaga H., Mitsokua M., Ura Y., Watanabe T., and Furukawa, K. (2001) Directed evolutionof biphenyl dioxygenase: emergence of enhanced degradation capacity for benzene,toluene, and alkylbenzenes. J. Bacteriol. 183, 5441–5444.PubMedCrossRefGoogle Scholar
  99. 99.
    Song J. K. and Rhee, J. S. (2001) Enhancement of stability and activity of phospholipaseA(1) in organic solvents by directed evolution. Biochim. Biophys. Acta 1547, 370–378.PubMedCrossRefGoogle Scholar
  100. 100.
    Raillard S., Krebber A., Chen Y., Ness J. E., Bermudez E., Trinidad R., et al. (2001)Novel enzyme activities and functional plasticity revealed by recombining highly homologousenzymes. Chem. Biol. 8, 891–898.PubMedCrossRefGoogle Scholar
  101. 101.
    Patten P. A., Howard R. J., and Stemmer W. P. (1997) Applications of DNA shuffling topharmaceuticals and vaccines. Curr. Opin. Biotechnol. 8, 724–733.PubMedCrossRefGoogle Scholar
  102. 102.
    Tobin M. B., Gustafsson C., and Huisman, G. W. (2000) Directed evolution: the “rational”basis for “irrational” design. Curr. Opin. Struct. Biol. 10, 421–427.PubMedCrossRefGoogle Scholar
  103. 103.
    Zhang Y. X., Perry K., Vinci V. A., Powell K., Stemmer W. P., and del Cardayre, S. B.(2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415,644–646.PubMedCrossRefGoogle Scholar
  104. 104.
    Patnaik R., Louie S., Gavrilovic V., Perry K., Stemmer W. P., Ryan C. M., and delCardayre S. B. (2002) Genome shuffling of Lactobacillus for improved acid tolerance.Nat. Biotechnol. 20, 707–712.PubMedCrossRefGoogle Scholar
  105. 105.
    Tong I.-T., Liao J. J., and Cameron D. C. (1991) 1,3-Propane diol production byEscherichia coli expressing genes from the Klebsiella pneumoniae dha region. Appl.Environ. Microbiol. 57, 3541–3546.PubMedGoogle Scholar
  106. 106.
    Laffend L. A., Nagarajan V., and Nakamura C. E. (1996) Bioconversion of a fermentablecarbon source to 1,3-propanediol by a single microorganism. Patent WO96/53.796 (E. I. DuPont de Nemours and Genencor International).Google Scholar
  107. 107.
    Picataggio S., Rohrer T., Deanda K., Lanning D., Reynolds R., Mielenz J., and Eirich, L. D. (1992) Metabolic engineering of Candida tropicalis for the production of long-chaindicarboxylic acids. Bio/Technology 10, 894–898.PubMedCrossRefGoogle Scholar
  108. 108.
    Arisawa A., Kawamura N., Narita T., Kojima I., Okamura K., Tsunekawa, H., et al.(1996) Direct fermentative production of acyltylosins by genetically-engineered strains ofStreptomyces fradiae. J. Antibiot. 49, 349–354.PubMedGoogle Scholar
  109. 109.
    National Academy of Sciences U.S.A. (2000) Transgenic Plants and World Agriculture,National Academy Press, Washington, DC.Google Scholar
  110. 110.
    Fox, S. (2000) Golden rice intended for developing world. Gen. Eng. News 20(12), 42,50.Google Scholar
  111. 111.
    Bigelas, R. (1989) Industrial products of biotechnology: Application of gene technology,in Biotechnology, vol. 7b (Rehm H. J. and Reed, G. eds.; Jacobson G. K. and Jolly, S.O., vol. eds.) VCH, Weinheim, Germany, pp. 229–259.Google Scholar
  112. 112.
    Tseng Y. H., Ting W. Y., Chou H. C., Yang B. Y., and Chun, C. C. (1992) Increase ofxanthan production by cloning xps genes into wild-type Xanthomonas campestris. Lett.Appl. Microbiol. 14, 43–46.PubMedCrossRefGoogle Scholar
  113. 113.
    Letisse F., Chevallereau P., Simon J.-L., and Lindley N. D. (2001) Kinetic analysis ofgrowth and xanthan gum production with Xanthomonas campestris on sucrose, usingsequentially consumed nitrogen sources. Appl. Microbiol. Biotechnol. 55, 417–422.PubMedCrossRefGoogle Scholar
  114. 114.
    Potera, C. (1997) Genencor & DuPont create “green” polyester. Gen. Eng. News 17(11), 17.Google Scholar
  115. 115.
    Akkara J. A., Ayyagari M. S., and Bruno, F. F. (1999) Enzymatic synthesis and modificationof polymers in nonaqueous solvents. Trends Biotechnol. 17, 67–73.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • José L. Adrio
    • 1
  • Arnold L. Demain
    • 2
  1. 1.Department of BiotechnologyPuleva BiotechGranadaSpain
  2. 2.Charles A. Dana Research Institute for Scientists Emeriti (R.I.S.E.)Drew UniversityMadison

Personalised recommendations