Skip to main content

Analysis of Dimerization Determinants of PDE6 Catalytic Subunits

  • Protocol
Phosphodiesterase Methods and Protocols

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 307))

  • 671 Accesses

Abstract

An absolute majority of cyclic nucleotide phosphodiesterases (PDEs) form catalytic dimers. The structural determinants and functional significance of PDE dimerization are poorly understood. Furthermore, all known dimeric PDEs with the exception of retinal rod guanosine 3′,5′-cyclic-monophosphate PDE (PDE6) are homodimeric enzymes. Rod PDE6 is a catalytic heterodimer composed of α- and β-subunits. Gel filtration, sucrose gradient centrifugation, and immunoprecipitation are standard techniques used to study dimerization of proteins. We successfully applied these methods to investigate dimerization of chimeric proteins between PDE6αβ and PDE5, which allowed us to elucidate the structural basis for heterodimerization of rod PDE6. This chapter outlines approaches to the investigation of PDE6 dimerization that can be utilized in a broader analysis of PDE dimerization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beavo, J. A. (1995) Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol. Rev. 75, 725–748.

    PubMed  CAS  Google Scholar 

  2. Francis, S. H., Turko, I. V., and Corbin, J. D. (2001) Cyclic nucleotide phosphodiesterases: relating structure and function. Prog. Nucleic Acid Res. Mol. Biol. 65, 1–52.

    Article  PubMed  CAS  Google Scholar 

  3. Fink, T. L., Francis, S. H., Beasley, A., Grimes, K. A., and Corbin, J. D. (1999) Expression of an active, monomeric catalytic domain of the cGMP-binding cGMP-specific phosphodiesterase (PDE5). J. Biol. Chem. 274, 34,613–34,620.

    Article  PubMed  CAS  Google Scholar 

  4. Richter, W. and Conti, M. (2002) Dimerization of the type 4 cAMP-specific phosphodiesterases is mediated by the upstream conserved regions (UCRs). J. Biol. Chem. 277, 40,212–40,221.

    Article  PubMed  CAS  Google Scholar 

  5. Gillespie, P. G. and Beavo, J. A. (1988) Characterization of a bovine cone photoreceptor phosphodiesterase purified by cyclic GMP-sepharose chromatography. J. Biol. Chem. 263, 8133–8141.

    PubMed  CAS  Google Scholar 

  6. Baehr, W., Devlin, M. J., and Applebury, M. L. (1979) Isolation and characterization of cGMP phosphodiesterase from bovine rod outer segments. J. Biol. Chem. 254, 11,669–11,677.

    PubMed  CAS  Google Scholar 

  7. Fung, B. K.-K., Young, J. M., Yamane, H. K., and Griswold-Prenner, I. (1990) Subunit stoichiometry of retinal rod cGMP phosphodiesterase. Biochemistry 29, 2657–2664.

    Article  PubMed  CAS  Google Scholar 

  8. Artemyev, N. O., Surendran, R., Lee, J. C., and Hamm, H. E. (1996) Subunit structure of rod cGMP-phosphodiesterase. J. Biol. Chem. 271, 25,382–25,388.

    Article  PubMed  CAS  Google Scholar 

  9. Chabre, M. and Deterre, P. (1989) Molecular mechanism of visual transduction. Eur. J. Biochem. 179, 255–266.

    Article  PubMed  CAS  Google Scholar 

  10. Yarfitz, S. and Hurley, J. B. (1994) Transduction mechanisms of vertebrate and invertebrate photoreceptors. J. Biol. Chem. 269, 14,329–14,332.

    PubMed  CAS  Google Scholar 

  11. Muradov, K. G., Boyd, K. K., Martinez, S. E, Beavo, J. A., and Artemyev, N. O. (2003) The GAFa domains of rod cGMP-phosphodiesterase 6 determine the selectivity of the enzyme dimerization. J. Biol. Chem. 278, 10,594–10,601.

    Article  PubMed  CAS  Google Scholar 

  12. Aravind, L. and Ponting, C. P. (1997) The GAF domain: an evolutionary link between diverse phototransducing proteins. Trends Biochem. Sci. 22, 458, 459.

    Article  PubMed  CAS  Google Scholar 

  13. Lipkin, V. M., Khramtsov, N. V., Vasilevskaya, N. V., Atabekova, K. G., Muradov, K. G., Li, T., Johnston, J. P., Volpp, K. J., and Applebury, M. L. (1990) β-subunit of bovine rod photoreceptor cGMP phosphodiesterase. J. Biol. Chem. 265, 12,955–12,959.

    PubMed  CAS  Google Scholar 

  14. McAllister-Lucas, L. M., Sonnenburg, W. K., Kadlecek, A., et al. (1993) The structure of a bovine lung cGMP-binding, cGMP-specific phosphodiesterase deduced from a cDNA clone. J. Biol. Chem. 268, 22,863–22,873.

    PubMed  CAS  Google Scholar 

  15. Charbonneau, H., Prusti, R. K., LeTrong, H., Sonnenburg, W. K., Mullaney, P. J., Walsh, K. A., and Beavo, J. A. (1990) Identification of a noncatalytic cGMP-binding domain conserved in both the cGMP-stimulated and photoreceptor cyclic nucleotide phosphodiesterases. Proc. Natl. Acad. Sci. USA 87, 288–292.

    Article  PubMed  CAS  Google Scholar 

  16. Stroop, S. D. and Beavo, J. A. (1991) Structure and function studies of the cGMP-stimulated phosphodiesterase. J. Biol. Chem. 266, 23,802–23,809.

    PubMed  CAS  Google Scholar 

  17. Thomas, M. K., Francis, S. H., and Corbin, J. D. (1990) Characterization of a purified bovine lung cGMP-binding cGMP phosphodiesterase. J. Biol. Chem. 265, 14,964–14,970.

    PubMed  CAS  Google Scholar 

  18. Martinez, S. E., Wu, A. Y., Glavas, N. A., Tang, X. B., Turley, S., Hol, W. G., and Beavo, J. A. (2002) The two GAF domains in phosphodiesterase 2A have distinct roles in dimerization and in cGMP binding. Proc. Natl. Acad. Sci. USA 99, 13,260–13,265.

    Article  PubMed  CAS  Google Scholar 

  19. Turko, I. V., Haik, T. L., McAllister-Lucas, L. M., Burns, F., Francis, S. H., and Corbin, J. D. (1996) Identification of key amino acids in a conserved cGMP-binding site of cGMP-binding phosphodiesterases: a putative NKXnD motif for cGMP binding. J. Biol. Chem. 271, 22,240–22,244.

    Article  PubMed  CAS  Google Scholar 

  20. Granovsky, A. E., Natochin, M., McEntaffer, R., Haik, T. L., Franscis, S. H., Corbin, J. D., and Artemyev, N. O. (1998) Probing domain functions of chimeric PDE6α′/PDE5 cGMP-phosphodiesterase. J. Biol. Chem. 273, 24,485–24,490.

    Article  PubMed  CAS  Google Scholar 

  21. Ausubel, F. M., Brent, R., Kingston, R. E., et al. (1993) Escherichia Coli, plasmids and bacteriophages, in, Current Protocols in Molecular Biology (Jansen, K., ed.), John Wiley & Sons, New York, pp. 1.8.1.–1.8.8.

    Google Scholar 

  22. Artemyev, N. O. Interactions between catalytic and inhibitory subunits of PDE6. in Phosphodiesterase: Methods and Protocols (Lugnier, C., ed.), Humana, Totowa, NJ, pp. 277–287.

    Google Scholar 

  23. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  24. Towbin, H., Staehelin, T., and Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4354.

    Article  PubMed  CAS  Google Scholar 

  25. Porath, J. (1963) Some recently developed fractionation procedures and their application to peptide and protein hormones. Pure Appl. Chem. 6, 233–244.

    Article  CAS  Google Scholar 

  26. Martin, R. G. and Ames, B. N. (1961) A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J. Biol. Chem. 236, 1372–1379.

    PubMed  CAS  Google Scholar 

  27. Siegel, L. M. and Monty, K. J. (1966) Determination of molecular weights and frictional ratios of proteins in impure systems by use of gel filtration and density gradient centrifugation: application to crude preparations of sulfite and hydroxylamine reductases. Biochim. Biophys. Acta 112, 346–362.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by National Institutes of Health grant EY-10843.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Muradov, K.G., Boyd, K.K., Artemyev, N.O. (2005). Analysis of Dimerization Determinants of PDE6 Catalytic Subunits. In: Lugnier, C. (eds) Phosphodiesterase Methods and Protocols. Methods In Molecular Biology™, vol 307. Humana Press. https://doi.org/10.1385/1-59259-839-0:263

Download citation

  • DOI: https://doi.org/10.1385/1-59259-839-0:263

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-314-5

  • Online ISBN: 978-1-59259-839-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics