Skip to main content

Determining the Subunit Structure of Phosphodiesterases Using Gel Filtration and Sucrose Density Gradient Centrifugation

  • Protocol
Phosphodiesterase Methods and Protocols

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 307))

Abstract

Size-exclusion chromatography (gel filtration) is a widely used method to determine the molecular weight of a protein. Often, the elution volume of several standard proteins is plotted against their known molecular weight to generate a standard curve, which is then used to determine the molecular weight of the protein of interest by its elution volume. However, gel filtration does not measure the mass of a particle as such, but the Stokes radius (R s), a property dependent on mass, shape, and hydration of a protein. Thus, this method works well only if the protein of interest has a spherical symmetrical shape and an average hydration level. For all other proteins, the use of gel filtration as the sole means to determine the molecular weight will be misleading. The molecular weight of any given protein can be calculated, however, using the method of Siegel and Monty. This method combines Stokes radii obtained from gel filtrations and sedimentation coefficients derived from density gradient centrifugations to calculate the mass of a protein independently of its shape or hydration. It has been shown previously that PDE4D3, a representative of the long PDE4 splice forms, behaves as a dimer, whereas PDE4D2, a prototype of the short PDE4 splice forms, is a monomer. Both proteins exhibit an anomalous behavior on gel filtration columns. For this reason, they are used in this study to demonstrate the necessity of performing both gel filtration and density gradient centrifugation to determine the molecular weight of a protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Francis, S. H., Turko, I. V., and Corbin, J. D. (2001) Cyclic nucleotide phosphodiesterases: relating structure and function. Prog. Nucleic Acid Res. Mol. Biol. 65, 1–52.

    Article  PubMed  CAS  Google Scholar 

  2. Kakkar, R., Raju, R. V., and Sharma, R. K. (1999) Calmodulin-dependent cyclic nucleotide phosphodiesterase (PDE1). Cell. Mol. Life Sci. 55, 1164–1186.

    Article  PubMed  CAS  Google Scholar 

  3. Francis, S. H., Chu, D. M., Thomas, M. K., et al. (1998) Ligand-induced conformational changes in cyclic nucleotide phosphodiesterases and cyclic nucleotide-dependent protein kinases. Methods 14, 81–92.

    Article  PubMed  CAS  Google Scholar 

  4. Grange, M., Sette, C., Cuomo, M., Conti, M., Lagarde, M., Prigent, A. F., and Nemoz, G. (2000) The cAMP-specific phosphodiesterase PDE4D3 is regulated by phosphatidic acid binding: consequences for cAMP signaling pathway and characterization of a phosphatidic acid binding site. J. Biol. Chem. 275, 33,379–33,387.

    Article  PubMed  CAS  Google Scholar 

  5. Sharma, R. K. and Wang, J. H. (1986) Calmodulin and Ca2+-dependent phosphorylation and dephosphorylation of 63-kDa subunit-containing bovine brain calmodulin-stimulated cyclic nucleotide phosphodiesterase isozyme. J. Biol. Chem. 261, 1322–1328.

    PubMed  CAS  Google Scholar 

  6. MacKenzie, S. J., Baillie, G. S., McPhee, I., et al. (2002) Long PDE4 cAMP specific phosphodiesterases are activated by protein kinase A-mediated phosphorylation of a single serine residue in Upstream Conserved Region 1 (UCR1). Br. J. Pharmacol. 136, 421–433.

    Article  PubMed  CAS  Google Scholar 

  7. Sette, C. and Conti, M. (1996) Phosphorylation and activation of a cAMP-specific phosphodiesterase by the cAMP-dependent protein kinase: involvement of serine 54 in the enzyme activation. J. Biol. Chem. 271, 16,526–16,534.

    Article  PubMed  CAS  Google Scholar 

  8. Ahmad, F., Cong, L. N., Stenson Holst, L., Wang, L. M., Rahn Landstrom, T., Pierce, J. H., Quon, M. J., Degerman, E., and Manganiello, V. C. (2000) Cyclic nucleotide phosphodiesterase 3B is a downstream target of protein kinase B and may be involved in regulation of effects of protein kinase B on thymidine incorporation in FDCP2 cells. J. Immunol. 164, 4678–4688.

    PubMed  CAS  Google Scholar 

  9. Thomas, M. K., Francis, S. H., and Corbin, J. D. (1990) Substrate-and kinase-directed regulation of phosphorylation of a cGMP-binding phosphodiesterase by cGMP. J. Biol. Chem. 265, 14,971–14,978.

    PubMed  CAS  Google Scholar 

  10. Stroop, S. D. and Beavo, J. A. (1991) Structure and function studies of the cGMP-stimulated phosphodiesterase. J. Biol. Chem. 266, 23,802–23,809.

    PubMed  CAS  Google Scholar 

  11. Martinez, S. E., Wu, A. Y., Glavas, N. A., Tang, X. B., Turley, S., Hol, W. G., and Beavo, J. A. (2002) The two GAF domains in phosphodiesterase 2A have distinct roles in dimerization and in cGMP binding. Proc. Natl. Acad. Sci. USA 99, 13,260–13,265.

    Article  PubMed  CAS  Google Scholar 

  12. Fink, T. L., Francis, S. H., Beasley, A., Grimes, K. A., and Corbin, J. D. (1999) Expression of an active, monomeric catalytic domain of the cGMP-binding cGMP-specific phosphodiesterase (PDE5). J. Biol. Chem. 274, 34,613–34,620.

    Article  PubMed  CAS  Google Scholar 

  13. Kameni Tcheudji, J. F., Lebeau, L., Virmaux, N., Maftei, C. G., Cote, R. H., Lugnier, C., and Schultz, P. (2001) Molecular organization of bovine rod cGMP-phosphodiesterase 6. J. Mol. Biol. 310, 781–791.

    Article  PubMed  CAS  Google Scholar 

  14. Muradov, K. G., Boyd, K. K., Martinez, S. E., Beavo, J. A., and Artemyev, N. O. (2003) The GAFa domains of rod cGMP-phosphodiesterase 6 determine the selectivity of the enzyme dimerization. J. Biol. Chem. 278, 10,594–10,601.

    Article  PubMed  CAS  Google Scholar 

  15. Richter, W. and Conti, M. (2002) Dimerization of the type 4 cAMP-specific phosphodiesterases is mediated by the upstream conserved regions (UCRs). J. Biol. Chem. 277, 40,212–40,221.

    Article  PubMed  CAS  Google Scholar 

  16. Kovala, T., Sanwal, B. D., and Ball, E. H. (1997) Recombinant expression of a type IV, cAMP-specific phosphodiesterase: characterization and structure-function studies of deletion mutants. Biochemistry 36, 2968–2976.

    Article  PubMed  CAS  Google Scholar 

  17. Rocque, W. J., Holmes, W. D., Patel, I. R., Dougherty, R. W., Ittoop, O., Overton, L., Hoffman, C. R., Wisely, G. B., Willard, D. H., and Luther, M. A. (1997) Detailed characterization of a purified type 4 phosphodiesterase, HSPDE4B2B: differentiation of high-and low-affinity (R)-rolipram binding. Protein Expr. Purif. 9, 191–202.

    Article  PubMed  CAS  Google Scholar 

  18. Richter, W., Hermsdorf, T., Lilie, H., Egerland, U., Rudolph, R., Kronbach, T., and Dettmer, D. (2000) Refolding, purification, and characterization of human recombinant PDE4A constructs expressed in Escherichia coli. Protein Expr. Purif. 19, 375–383.

    Article  PubMed  CAS  Google Scholar 

  19. Grange, M., Picq, M., Prigent, A. F., Lagarde, M., and Nemoz, G. (1998) Regulation of PDE-4 cAMP phosphodiesterases by phosphatidic acid. Cell Biochem. Biophys. 29, 1–17.

    Article  PubMed  CAS  Google Scholar 

  20. Lario, P. I., Bobechko, B., Bateman, K., Kelly, J., Vrielink, A., and Huang, Z. (2001) Purification and characterization of the human PDE4A catalytic domain (PDE4A330-723) expressed in Sf9 cells. Arch. Biochem. Biophys. 394, 54–60.

    Article  PubMed  CAS  Google Scholar 

  21. Saldou, N., Baecker, P. A., Li, B., Yuan, Z., Obernolte, R., Ratzliff, J., Osen, E., Jarnagin, K., and Shelton, E. R. (1998) Purification and physical characterization of cloned human cAMP phosphodiesterases PDE-4D and-4C. Cell Biochem. Biophys. 28, 187–217.

    Article  PubMed  CAS  Google Scholar 

  22. Xu, R. X., Hassell, A. M., Vanderwall, D., et al. (2000) Atomic structure of PDE4: insights into phosphodiesterase mechanism and specificity. Science 288, 1822–1825.

    Article  PubMed  CAS  Google Scholar 

  23. Lee, M. E., Markowitz, J., Lee, J. O., and Lee, H. (2002) Crystal structure of phosphodiesterase 4D and inhibitor complex(1). FEBS Lett. 530, 53–58.

    Article  PubMed  CAS  Google Scholar 

  24. Siegel, L. M. and Monty, K. J. (1966) Determination of molecular weights and frictional ratios of proteins in impure systems by use of gel filtration and density gradient centrifugation: application to crude preparations of sulfite and hydroxylamine reductases. Biochim. Biophys. Acta 112, 346–362.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to Marco Conti for critical reading of the manuscript and Caren Spencer for editorial assistance. This work was supported by National Institutes of Health Grant HD20788.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Richter, W. (2005). Determining the Subunit Structure of Phosphodiesterases Using Gel Filtration and Sucrose Density Gradient Centrifugation. In: Lugnier, C. (eds) Phosphodiesterase Methods and Protocols. Methods In Molecular Biology™, vol 307. Humana Press. https://doi.org/10.1385/1-59259-839-0:167

Download citation

  • DOI: https://doi.org/10.1385/1-59259-839-0:167

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-314-5

  • Online ISBN: 978-1-59259-839-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics