Skip to main content

Cygnets

In Vivo Characterization of Novel cGMP Indicators and In Vivo Imaging of Intracellular cGMP

  • Protocol
Phosphodiesterase Methods and Protocols

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 307))

Abstract

The second messenger cyclic guanosine 5′-monophosphate (cGMP) plays a key role in the control and regulation of a steadily increasing number of diverse physiological processes. As the appreciation of the importance of understanding the cGMP signaling pathway has grown, so has the awareness of the limited techniques with which to study the rapid intracellular cGMP kinetics. We have previously demonstrated the construction of cygnets, cGMP indicators using energy transfer comprised of cyan and yellow variants of green fluorescent protein flanked by conformationally sensitive cGMP receptor portion taken from the cGMP-dependent protein kinase (7). Here, we report that cGMP binds to Cygnet-2.1, utilizing ECFP and Citrine, with an apparent equilibrium-binding constant of 600 nM causing a total fluorescence intensity ratio change of 45%. In contrast, cAMP could elicit a maximal 10% change in fluorescence resonance energy transfer (FRET) ratio, demonstrating an approx 500-fold selectivity for cGMP. When expressed in vascular smooth muscle cells, cygnets demonstrated even cytosolic distribution and nuclear exclusion. Cultured rat aortic smooth muscle cells, which exhibit a noncontractile, synthetic phenotype typically seen in response to atherosclerosis or vascular injury, responded to natriuretic peptide (BNP)-mediated activation of the particulate guanylyl cyclase. In conclusion, cygnets have facilitated the temporal resolution and evaluation of the contributions of cyclases and phosphodiesterases in determining overall cGMP accumulation, and the visualization of novel spatial dynamics that will contribute to more fully understanding the role of cGMP in the mediation of smooth muscle relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heim, R. and Tsien, R. Y. (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 6, 178–182.

    Article  PubMed  CAS  Google Scholar 

  2. Heim, R., Prasher, D. C., and Tsien, R. Y. (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. USA 91, 12,501–12,504.

    Article  PubMed  CAS  Google Scholar 

  3. Miyawaki, A., Llopis, J., Heim, R., McCaffery, J. M., Adams, J. A., Ikura, M., and Tsien, R. Y. (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887.

    Article  PubMed  CAS  Google Scholar 

  4. Miyawaki, A., Griesbeck, O., Heim, R., and Tsien, R. Y. (1999) Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc. Natl. Acad. Sci. USA 96, 2135–2140.

    Article  PubMed  CAS  Google Scholar 

  5. Zaccolo, M. and Pozzan, T. (2002) Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295, 1711–1715.

    Article  PubMed  CAS  Google Scholar 

  6. Zaccolo, M., De Giorgi, F., Cho, C. Y., Feng, L., Knapp, T., Negulescu, P. A., Taylor, S. S., Tsien, R. Y., and Pozzan, T. (2000) A genetically encoded, fluorescent indicator for cyclic AMP in living cells. Nat. Cell. Biol. 2, 25–29.

    Article  PubMed  CAS  Google Scholar 

  7. Honda, A., Adams, S. R., Sawyer, C. L., Lev-Ram, V., Tsien, R. Y., and Dostmann, W. R. G. (2001) Spatiotemporal dynamics of guanosine 3′,5′-cyclic monophosphate revealed by a genetically encoded, fluorescent indicator. Proc. Natl. Acad. Sci. USA 98, 2437–2442

    Article  PubMed  CAS  Google Scholar 

  8. Sawyer, C. L., Honda, A., and Dostmann, W. R. G. (2003) Cygnets: spatial and temporal analysis of intracellular cGMP. Proc. West. Pharmacol. Soc. 46, 28–31.

    PubMed  CAS  Google Scholar 

  9. Ruth, P., Landgraf, W., Keilbach, A., May, B., Egleme, C., and Hofmann, F. (1991) The activation of expressed cGMP-dependent protein kinase isozymes I alpha and I beta is determined by the different amino-termini. Eur. J. Biochem. 202, 1339–1344.

    Article  PubMed  CAS  Google Scholar 

  10. Zhao, J., Trewhella, J., Corbin, J., Francis, S., Mitchell, R., Brushia, R., and Walsh, D. (1997) Progressive cyclic nucleotide-induced conformational changes in the cGMP-dependent protein kinase studied by small angle X-ray scattering in solution. J. Biol. Chem. 272, 31,929–31,936.

    Article  PubMed  CAS  Google Scholar 

  11. Wall, M. E., Francis, S. H., Corbin, J. D., Grimes, K., Richie-Jannetta, R., Kotera, J., Macdonald, B. A., Gibson, R. R., and Trewhella, J. (2003) Mechanisms associated with cGMP binding and activation of cGMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 100, 2380–2385.

    Article  PubMed  CAS  Google Scholar 

  12. Whitford, W. G. and Mertz, L. M. (1996) Multiplicity of bacoloviral infection and recombinant protein production in sf9 cells. Focus 18, 3: 75–76.

    Google Scholar 

  13. Luckow, V. A., Lee, C. S., Barry, G. F., and Olins, P. O. (1993) Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J. Virol. 67, 4566–4579.

    PubMed  CAS  Google Scholar 

  14. Wernert, W., Flockerzi, V., and Hofmann, F. (1989), The cDNA of the two isoforms of bovine cGMP-dependent protein kinase. FEBS Lett. 251, 191–196.

    Article  Google Scholar 

  15. Griesbeck, O., Baird, G. S., Campbell, R. E., Zacharias, D. A., and Tsien, R. Y. (2001) Reducing the environmental sensitivity of yellow fluorescent protein: mechanism and applications. J. Biol. Chem. 276, 29,188–29,194.

    Article  PubMed  CAS  Google Scholar 

  16. Feil, R., Kellermann, J., and Hofmann, F. (1995) Functional cGMP-dependent protein kinase is phosphorylated in its catalytic domain at threonine-516. Biochemistry 34, 13,152–13,158.

    Article  PubMed  CAS  Google Scholar 

  17. Feil, R., Bigl, M., Ruth, P., and Hofmann, F. (1993) Expression of cGMP-dependent protein kinase in Escherichia coli. Mol. Cell. Biochem. 127–128, 71–80.

    Article  PubMed  Google Scholar 

  18. Keilbach, A., Ruth, P., and Hofmann, F. (1992) Detection of cGMP dependent protein kinase isozymes by specific antibodies. Eur. J. Biochem. 208, 467–473.

    Article  PubMed  CAS  Google Scholar 

  19. Dostmann, W. R. G., Nickl, C., Thiel, S., Tsigelny, I., Frank, R., and Tegge, W. (1999) Delineation of selective cyclic GMP-dependent protein kinase I substrate and inhibitor peptides based on combinatorial peptide libraries on paper. Pharmacol. Ther. 82, 373–387.

    Article  PubMed  CAS  Google Scholar 

  20. Heil, W. G., Landgraf, W., and Hofmann, F. (1987) A catalytically active fragment of cGMP-dependent protein kinase: occupation of its cGMP-binding sites does not affect its phosphotransferase activity. Eur. J. Biochem. 168, 117–121.

    Article  PubMed  CAS  Google Scholar 

  21. Ishii, K., Sheng, H., Warner, T. D., Forstermann, U., and Murad, F. (1991) A simple and sensitive bioassay method for detection of EDRF with RFL-6 rat lung fibroblasts. Am. J. Physiol. 261, H598–H603.

    PubMed  CAS  Google Scholar 

  22. Cornwell, T. L. and Lincoln, T. M. (1989) Regulation of intracellular Ca2+ levels in cultured vascular smooth muscle cells: reduction of Ca2+ by atriopeptin and 8-bromo-cyclic GMP is mediated by cyclic GMP-dependent protein kinase. J. Biol. Chem. 264, 1146–1155.

    PubMed  CAS  Google Scholar 

  23. Travo, P., Barret, G., and Burnstock, G. (1980) Differences in proliferation of primary cultures of vascular smooth muscle cells taken from male and female rats. Blood Vessels 17, 110–116.

    PubMed  CAS  Google Scholar 

  24. Korshunov, V. A. and Berk, B. C. (2003) Flow-induced vascular remodeling in the mouse: a model for carotid intima-media thickening. Arterioscl. Thromb. Vasc. Biol. 23, 2185–2191.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. F. Hofmann for providing the bovine cGMP-dependent protein kinase type Iα cDNA, and Dr. R. Y. Tsien for providing the yellow cameleon-2 plasmid and citrine cDNA. This work was supported by National Science Foundation Grant MCB-9983097, the Lake Champlain Cancer Research Organization, the Totman Medical Research Trust, and American Heart Association Grant 9920260T.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Honda, A., Sawyer, C.L., Cawley, S.M., Dostmann, W.R.G. (2005). Cygnets. In: Lugnier, C. (eds) Phosphodiesterase Methods and Protocols. Methods In Molecular Biology™, vol 307. Humana Press. https://doi.org/10.1385/1-59259-839-0:027

Download citation

  • DOI: https://doi.org/10.1385/1-59259-839-0:027

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-314-5

  • Online ISBN: 978-1-59259-839-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics