Skip to main content

Endogenous Brain Protection

Models, Gene Expression, and Mechanisms

  • Protocol
Book cover Stroke Genomics

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 104))

Abstract

Almost all injurious stimuli, when applied below the threshold of producing injury, activate endogenous protective mechanisms that significantly decrease the degree of injury after subsequent injurious stimuli. For example, a short duration of ischemia (i.e., ischemic preconditioning [PC]) can provide significant brain protection to subsequent long-duration ischemia (i.e., ischemic tolerance [IT]). PC/IT has recently been shown in human brain, suggesting that learning more about these endogenous neuroprotective mechanisms could help identify new approaches to treat patients with stroke and other central nervous system disorders/injury. This chapter provides a brief overview of PC/IT research, illustrates the types of data that can be generated from in vivo and in vitro models to help us understand gene and protein expression related to induced neuroprotective mechanisms, and emphasizes the importance of future research on this phenomenon to help discover new mechanisms and targets for the medical treatment of brain and other end-organ injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dirnagl, U., Simon, R. P., and Hallenbeck, J. M. (2003) Ischemic tolerance and endogenous neuroprotection. Trends Neurosci. 26, 248–254.

    Article  PubMed  CAS  Google Scholar 

  2. Chen, J., Graham, S. H., Zhu, R. L., and Simon, R. P. (1996) Stress proteins and tolerance to focal cerebral ischemia. J. Cereb. Blood Flow Metab. 16, 566–577.

    Article  PubMed  CAS  Google Scholar 

  3. Dawson, V. l. Dawson, T. E. (2000) Neuronal ischaemic preconditioning. Trends Pharmacol. Sci. 21, 423–424.

    Article  PubMed  CAS  Google Scholar 

  4. Kirino, T. (2002) Ischemic tolerance. J. Cereb. Blood Flow Metab. 22, 1283–1296.

    Article  PubMed  Google Scholar 

  5. Schaller, B. and Graf, R. (2002) Cerebral ischemic preconditioning: an experimental phenomenon or a clinical important entity of stroke prevention? J. Neurol. 249, 1503–1511.

    Article  PubMed  CAS  Google Scholar 

  6. Matsushima, K. and Hakim A. M. (1995) Transient forebrain ischemia protects against subsequent focal cerebral ischemia without changing cerebral perfusion. Stroke 26, 1047–1052

    PubMed  CAS  Google Scholar 

  7. Kitagawa, K., Matsumoto, M., Tagaya, M., et al. (1990) “Ischemic tolerance” phenomenon found in the brain. Brain Res. 528, 21–24.

    Article  PubMed  CAS  Google Scholar 

  8. Barone, F. C., White, R. F., Spera, P. A., Currie, R. W., Wang, X. K., and Feuerstein, G. Z. (1998) Ischemic preconditioning and brain tolerance: temporal histologic and functional outcomes, protein synthesis requirement, and IL-1ra and early gene expression. Stroke 29, 1937–1951.

    PubMed  CAS  Google Scholar 

  9. Stagliano, N. E., Perez-Prinz, M. A., Moskowitz, M. A., Huang, P. L. (1999) Focal ischemic preconditioning induces rapid tolerance to middle cerebral artery occlusion in mice. J. Cereb. Blood Flow Metab. 19, 757–761.

    Article  PubMed  CAS  Google Scholar 

  10. Yellon, D. M., Baxter, G. F., Garcia-Dorado, D., Heusch, G., Sumeray, M. S. (1998) Ischaemic preconditioning: present position and future directions. Cardiovasc Res. 37, 21–23.

    Article  PubMed  CAS  Google Scholar 

  11. Lawson, C. S. and Downey, J. M. (1993) Ischemic preconditioning: state of the art myocardial protection. Cardiovasc. Res. 27: 542–550.

    Article  PubMed  CAS  Google Scholar 

  12. Alkhulaifi, A. M., Pugsley, W. B., Yellon, D. M. (1993) The influence of the time period between preconditioning ischemia and prolonged ischemia on myocardial iprotection. Cardioscience 4, 163–169.

    PubMed  CAS  Google Scholar 

  13. Yellon, D. M. and Baxter, G. F. (1995) A “second window of protection” or delayed preconditioning phenomenon: Future horizons for myocardial protection? J. Mol. Cellul. Cardiol. 27:1023–1034.

    Article  CAS  Google Scholar 

  14. Prass, K., Wiegand, F., Schumann, P., et al. (2000) Hyperbaric oxygenation induced tolerance against focal cerebral ischemia in mice is strain dependent. Brain Res. 871, 146–150.

    Article  PubMed  CAS  Google Scholar 

  15. Zimmermann, C., Ginnis, I., Furuya, K., et al. (2001) Lipopolysaccharide-induced ischemic tolerance is associated with increased levels of ceramide in brain and in plasma. Brain Res. 895, 59–65.

    Article  PubMed  CAS  Google Scholar 

  16. Blondea, N., Widmann, C., Lazdunsk, M., Heurteaux, C. (2002) Polyunsaturated fatty acids induce ischemic and epileptic tolerance. Neuroscience 109, 231–241.

    Article  Google Scholar 

  17. Wiegand, F., Liao, W., Busch, C, et al. (1999) Respiratory chain inhibition induces tolerance to focal cerebral ischemia. J. Cereb. Blood Flow Metab. 19, 1229–1237.

    Article  PubMed  CAS  Google Scholar 

  18. Chopp, M., Chen, H., Ho, K. L., et al. (1989) Transient hyperthermia protects against subsequent forebrain ischemic cell damage in the rat. Neurology 39, 1396–1398.

    PubMed  CAS  Google Scholar 

  19. Nishio, S., Yunoki, M., Chen, Z. F., Anzivino, M. J., Lee, K. S. (2000) Ischemic tolerance in the rat neocortex following hypothermic preconditioning. J. Neurosurg. 93, 845–851.

    Article  PubMed  CAS  Google Scholar 

  20. Kobayashi, S., Harris, V. A., and Welsh, F. A. (1995) Spreading depression induces tolerance of cortical neurons to ischemia in rat brain. J. Cereb. Blood Flow Metab. 15, 721–727.

    PubMed  CAS  Google Scholar 

  21. Galea, E., Glickstein, S. B., Feinstein, D. L., Golanov, E. V., Reis, D. J. (1998) Cerebellar stimulation reduces inducible nitric oxide synthase expression and protects brain from ischemia. Am. J. Physiol. 274, H2035–H2045.

    PubMed  CAS  Google Scholar 

  22. Kato, H., Liu, Y., Araki, T., Kogure, K. (1991) Temporal profile of the effects of pretreatment with brief cerebral ischemia on the neuronal damage following secondary ischemic insult in the gerbil: cumulative damage and protective effects. Brain Res. 553, 238–242.

    Article  PubMed  CAS  Google Scholar 

  23. Tomida, S., Nowak, T. S., Vass, K., Lohr, J. M., Klatzo, I. (1987) Experimental model for repetitive ischemic attacks in the gerbil: The cumulative effect of repeated ischemic insults. J. Cereb. Blood Flow Metab. 7, 773–782.

    PubMed  CAS  Google Scholar 

  24. Currie, R. W., Ellison, J. A., White, R. F., et al. (2000) Benign focal ischemic preconditioning induces neuronal hsp70 and prolonged astrogliosis with expression of Hsp27. Brain Res. 863, 169–181.

    Article  PubMed  CAS  Google Scholar 

  25. Liu, Y., Kato, H., Nakata, N., Kogure, K. (1992) Protection of rat hippocampus against ischemic neuronal damage by pretreatment with sublethal ischemia. Brain Res. 586, 121–124.

    Article  PubMed  CAS  Google Scholar 

  26. Chen, J., Graham, S. H., Zhu, R. L., Simon, R. P. (1996) Stress proteins and tolerance to focal cerebral ischemia. J. Cereb. Blood Flow Metab. 16, 566–577.

    Article  PubMed  CAS  Google Scholar 

  27. Kitagawa, K., Matsumoto, M., Kuwabara, K., et al. (1991) ‘Ischemic tolerance’ phenomenon detected in various brain regions. Brain Res. 561, 203–211.

    Article  PubMed  CAS  Google Scholar 

  28. Kogure, K. and Kato, H. (1993) Altered gene expression in cerebral ischemia. Stroke 24, 2121–2127.

    PubMed  CAS  Google Scholar 

  29. Barone, F. C. (1998) Emerging therapeutic targets in focal stroke and brain trauma: Cytokines and the brain inflammatory response to injury. Emerg. Ther. Targ. 2, 1–23.

    Google Scholar 

  30. Barone, F. C. and Feuerstein, G. Z. (1999) Inflammatory mediators and stroke: New opportunities for novel therapeutics (Review). J. Cereb. Blood Flow Metab. 15, 819–834.

    Article  Google Scholar 

  31. Read, S. J., Parsons, A. A., Harrison, D. C, et al. (2001) Stroke genomics: approaches to identify, validate and understand adaptive gene expression changes in ischemic stroke (Review). J. Cereb. Blood Flow Metab. 21, 755–778.

    Article  PubMed  CAS  Google Scholar 

  32. Trendelenburg, G., Prass, K, Priller, J., et al. (2002) Serial analysis of gene expression identifies metallothionein-II as major neuroprotective gene in mouse focal cerebral ischemia. J. Neurosci. 22, 5879–5888.

    PubMed  CAS  Google Scholar 

  33. Lu, A., Tang, Y., Ran, R., et al. (2003) Genomics of the periinfarction cortex after focal ischemia. J. Cereb. Blood Flow Metab. 23, 786–810.

    Article  PubMed  CAS  Google Scholar 

  34. Weih, M., Kallenberg, K., Bergk, A., et al. (1999) Attenuated stroke severity after prodromal TIA: a role for ischemic tolerance in the brain? Stroke 30, 1851–1854.

    PubMed  CAS  Google Scholar 

  35. Moncayo, J., de Freitas, G. R., Bogousslavsky, J., Altieri, M., van Melle, G. (2000) Do transient ischemic attacks have a neuroprotective effect? Neurology 54, 2089–2094.

    PubMed  CAS  Google Scholar 

  36. Moncayo, J., de Freitas, G. R., Bogousslavsky, J., Altieri, M., van Melle, G. (1995) Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning. Proc. Natl. Acad. Sci. USA 92, 4666–4670.

    Article  Google Scholar 

  37. Bordet, R., Deplanque, D., Maboudou, P., et al. (2000) Increase in endogenous brain superoxide dismutase as a potential mechanism of lipopolysaccharide-induced brain ischemic tolerance. J. Cereb. Blood Flow Metab. 20, 1190–1196.

    Article  PubMed  CAS  Google Scholar 

  38. Ohtsuki, T., Ruetzler, C. A., Tasaki, K., and Hallenbeck, J. M. (1996) Interleukin-1 mediates induction of tolerance to global ischemia in gerbil hippocampus CA1 neurons. J. Cereb. Blood Flow Metab. 16, 1137–1142.

    Article  PubMed  CAS  Google Scholar 

  39. Buttini, M., Sauter, A., Boddeke, H. W. G M. (1994) Induction of interleukin-1β mRNA after cerebral ischemia in the rat. Mol. Brain Res. 23, 126–134.

    Article  PubMed  CAS  Google Scholar 

  40. Liu, T., McDonnell, P. C, Young, P. R., et al. (1993) Interleukin-1β mRNA expression in ischemic rat cortex. Stroke 24, 1746–1751.

    PubMed  CAS  Google Scholar 

  41. Wang, X., Yue, T. L., Barone, F. C, et al. (1994) Concomitant cortical expression of TNF-α and IL-1 β mRNAs follows early response gene expression in transient focal ischemia. Mol. Chem. Neuropathol. 23, 103–114.

    Article  PubMed  CAS  Google Scholar 

  42. Saito, K., Suyama, K., Nishida, K., Sei, Y., Basile, A. S. (1996) Early increases in TNF-α, IL-6 and IL-1β levels following transient cerebral ischemia in gerbil brain. Neurosci. Lett. 206, 149–152.

    Article  PubMed  CAS  Google Scholar 

  43. Yamasaki, Y., Matsuura, N., Shozuhara, H., Onodera, H., Itoyama, Y., Kogure, K. (1992b) Interleukin-1 as a pathogenetic mediator of ischemic brain damage in rats. Stroke 26, 676–680.

    Google Scholar 

  44. Hara, H., Friedlander, R. M., Gagliardini, V., et al. (1997) Inhibition of interleukin 1beta converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proc. Natl. Acad. Sci. USA 94, 2007–2012.

    Article  PubMed  CAS  Google Scholar 

  45. Hara, H., Fink, K., Endres, M., Friedlander, R. M., Gagliardini, V., Yuan, J., Moskowitz, M.A. (1997) Attenuation of transient focal cerebral ischemic injury in transgenic mice expressing a mutant ICE inhibitory protein. J. Cereb Blood Flow Metab. 17: 370–375.

    Article  PubMed  CAS  Google Scholar 

  46. Eisenberg, S. P., Brewer, M. T., Verderber, E., et al. (1991) Interleukin 1 receptor antagonist is a member of the interleukin 1 gene family: evolution of a cytokine control mechanism. Proc. Natl. Acad. Sci. USA 88, 5232–5236.

    Article  PubMed  CAS  Google Scholar 

  47. Dinarello, C. A. and Thompson, R. C. (1991) Blocking IL-1: interleukin 1 receptor antagonist in vivo and in vitro. Immunol. Today 12, 404–410.

    Article  PubMed  CAS  Google Scholar 

  48. Relton, J. K. and Rothwell, N. J. (1992) Interleukin-1 receptor antagonist inhibits ischemic and exciotoxic neuronal damage in the rat. Brain Res. Bull. 29, 243–246.

    Article  PubMed  CAS  Google Scholar 

  49. Rothwell, N. J. and Relton, J. K. (1993) Involvement of interleukin-1 and lipocortin-1 in ischemic brain damage. Cerebrovasc. Brain Metab. Rev. 5, 178–198.

    PubMed  CAS  Google Scholar 

  50. Toulmond, S. and Rothwell, N. J. (1995) Interleukin-1 receptor antagonist inhibits neuronal damage caused by fluid percussion injury in the rat. Brain Res. 671, 261–266.

    Article  PubMed  CAS  Google Scholar 

  51. Loddick, S. A. and Rothwell, N. J. (1996) Neuroprotective effects of human recombinant interleukin-1 receptor antagonist in focal cerebral ischemia in the rat. J. Cereb. Blood Flow Metab. 16, 932–940.

    Article  PubMed  CAS  Google Scholar 

  52. Wong, G. H. and Goeddel, D. V. (1988) Induction of manganous superoxide dismutase by tumor necrosis factor: possible protective mechanism. Science 242, 941–944.

    Article  PubMed  CAS  Google Scholar 

  53. Goodman, Y. and Mattson, M. P. (1996) Ceramide protects hippocampal neurons against excitotoxic and oxidative insults, and amyloid β-peptide toxicity. J. Neurochem. 66, 869–872.

    Article  PubMed  CAS  Google Scholar 

  54. Nawashiro H., Tasaki K., Ruetzler C. A., Hallenbeck J. M. (1997) TNF-α pre-treatment induces protective effects against focal cerebral ischemia in mice. J. Cereb. Blood Flow Metab. 17:483–490.

    Article  PubMed  CAS  Google Scholar 

  55. Liu, J., Ginis, I., Spatz, M., Hallenbeck, J. M. (2000) Hypoxic preconditioning protects cultured neurons against hypoxic stress via TNF-α and ceramide. Am. J. Physiol. Cell Physiol. 278, C144–C153.

    PubMed  CAS  Google Scholar 

  56. Ginis, I., Jaiswal, R., Klimanis, D., Liu, J., Greenspon, J., Hallenbeck, J. M. (2002) TNF-α-induced tolerance to ischemic injury involves differential control of NF-B transactivation: the role of NF-B association with p300 adaptor. J. Cereb. Blood Flow Metab. 22, 142–152.

    Article  PubMed  CAS  Google Scholar 

  57. Cadenas, A., Morro M. A., Leza, J. C., et al. (2002) Upregulation of TACE/ADAM17 after ischemic preconditioning is involved in rain tolerance. J. Cereb. Blood Flow Metab. 22, 1297–1302.

    Google Scholar 

  58. Dienel, G. A., Kiessling, M., Jacewicz, M., and Pulsinelli, W. A. (1986) Synthesis of heat shock proteins in rat brain cortex after transient ischemia. J. Cereb. Blood Flow Metab. 6, 505–510.

    PubMed  CAS  Google Scholar 

  59. Gonzalez, M. F., Lowenstein, D., Fernyak, S., Hisanaga, K., Simon, R., and Sharp, F. R. (1991) Induction of heat shock protein 72-like immunoreactivity in the hippocampal formation following transient global ischemia. Brain Res. Bull. 26, 241–250.

    Article  PubMed  CAS  Google Scholar 

  60. Sharp, F. R., Lowenstein, D., Simon, R., and Hisanaga, K. (1991) Heat shock protein hsp72 induction in cortical and striatal astrocytes and neurons following infarction. J. Cereb. Blood Flow Metab. 11, 621–627.

    PubMed  CAS  Google Scholar 

  61. Simon, R. P., Cho, H., Gwinn, R., and Lowenstein, D. H. (1991) The temporal profile of 72-kDa heat-shock protein expression following global ischemia. J. Neurosci. 11, 881–889.

    PubMed  CAS  Google Scholar 

  62. Vass, K., Welch, W. J., and Nowak, T. S., Jr. (1988) Localization of 70-kDa stress protein induction in gerbil brain after ischemia. Acta. Neuropathol. (Berl.) 77, 128–135.

    CAS  Google Scholar 

  63. Lindquist, S. (1988) The heat-shock proteins. Annu. Rev. Genet. 22, 631–677.

    Article  PubMed  CAS  Google Scholar 

  64. Becker, J. and Craig, E. A. (1994) Heat-shock proteins as molecular chaperones. Eur. J. Biochem. 219, 11–23.

    Article  PubMed  CAS  Google Scholar 

  65. Hartl, F. U. (1996) Molecular chaperones in cellular protein folding. Nature 381, 571–580.

    Article  PubMed  CAS  Google Scholar 

  66. Schatz, G. and Dobberstein, B. (1996) Common principles of protein translocation across membranes. Science 271, 1519–1526.

    Article  PubMed  CAS  Google Scholar 

  67. Currie, R. W. and White, F. P. (1981) Trauma-induced protein in rat tissues: a physiological role for a “heat shock” protein? Science 214, 72–73.

    Article  PubMed  CAS  Google Scholar 

  68. Currie, R. W., Karmazyn, M., Kloc, M., and Mailer, K. (1988) Heat-shock response is associated with enhanced post-ischemic ventricular recovery. Cir. Res. 63, 543–549.

    CAS  Google Scholar 

  69. Marber, M. S., Mestri, R., Chi, S. H., Sayen, M. R., Yellon, D. M., and Dillmann, W. H. (1995) Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J. Clin. Invest. 95, 1446–1456.

    Article  PubMed  CAS  Google Scholar 

  70. Plumier, J. C. L., Ross, B. M., Currie, R. W., et al. (1995) Transgenic mice expressing the human heat shock protein 70 have improved post-ischemic myocardial recovery. J. Clin. Invest. 95, 1854–1860.

    Article  PubMed  CAS  Google Scholar 

  71. Glazier, S. S., O’Rourke, D. M., Graham, D. I., and Welsh, F. A. (1994) Induction of ischemic tolerance following brief focal ischemia in rat brain. J. Cereb. Blood Flow Metab. 14, 545–553.

    PubMed  CAS  Google Scholar 

  72. Nishi, S., Taki, W., Uemura, Y., et al. (1993) Ischemic tolerance due to the induction of HSP70 in a rat ischemic recirculation model. Brain Res. 615, 281–288.

    Article  PubMed  CAS  Google Scholar 

  73. Plumier, J. C. L., Krueger, A. M., Currie, R. W., Kontoyiannis, D., Kollias, G., and Pagoulatos, G. N. (1997) Transgenic mice expressing the human inducible Hsp70 have hippocampal neurons resistant to injury. Cell Stress Chaperones 2, 162–167.

    Article  PubMed  CAS  Google Scholar 

  74. Simon, R. P., Niiro, M., and Gwinn, R. (1993) Prior ischemic stress protects against experimental stroke. Neurosci. Lett. 163, 135–137.

    Article  PubMed  CAS  Google Scholar 

  75. Kitagawa, K., Matsumoto, M., Kuwabara, K., et al. (1991) Hyperthermia-induced neuronal protection against ischemic injury. J. Cereb. Blood Flow Metab. 11, 449–452.

    PubMed  CAS  Google Scholar 

  76. Kitagawa, K., Matsumoto, M., Kuwabara, K., et al. (1991) ‘Ischemic tolerance’ phenomena detected in various brain regions. Brain Res. 561, 203–211.

    Article  PubMed  CAS  Google Scholar 

  77. Liu, Y., Kato, H., Nakata, N., and Kogure, K. (1992) Protection of rat hippocampus against ischemic neuronal damage by pretreatment with sublethal ischemia. Brain Res. 586, 121–124.

    Article  PubMed  CAS  Google Scholar 

  78. Liu, Y., Kato, H., Nakata, N., and Kogure, K. (1993) Temporal profile of heat shock protein 70 synthesis in ischemic tolerance induced by preconditioning ischemia in rat hippocampus. Neuroscience 56, 921–927.

    Article  PubMed  CAS  Google Scholar 

  79. Nowak, T. S., Osborne, O. C., Suga, S. (1993) Stress protein and proto-oncogene expression as indicators of neuronal pathophysiology after ischemia. Prog. Brain Res. 96, 195–208.

    Article  PubMed  CAS  Google Scholar 

  80. Mehlen, P., Préville, X., Chareyron, P., Briolay, J., Klementz, R., and Arrigo, A. P. (1995) Constitutive expression of human Hsp27, Drosophila Hsp27, or human alpha B-crystallin confer resistance to TNF-and oxidative stress-induced cytotoxicity in stably transfected murine L929 fibroblasts. J. Immunol. 154, 363–374.

    PubMed  CAS  Google Scholar 

  81. Landry, J., Chrétien, P., Lambert, H., Hickey, E., and Weber, L. A. (1989) Heat shock resistance conferred by expression of the human HSP27 gene in rodent cells. J. Cell. Biol. 109, 7–15.

    Article  PubMed  CAS  Google Scholar 

  82. Kalwy, S. A., Akbar, M. T., Coffin, R. S., deBelleroche, J., Latchman, D. S. (2003) Heat shock protein 27 delivered via herpes simplex virus vector can protect neurons in the hippocampus against kainic-acid-induced cell loss. Brain Res. 111, 91–103.

    Article  CAS  Google Scholar 

  83. Plumier, J. C. L., Armstrong, J. N., Landry, J., Babity, J. M., Robertson, H. A., and Currie, R. W. (1996) Expression of the 27-kDa heat shock protein (Hsp27) following kainic acid-induced status epilepticus in the rat. Neuroscience 75, 849–856.

    Article  PubMed  CAS  Google Scholar 

  84. Plumier, J. C. L., Armstrong, J. N., Wood, N. I., et al. (1997) Differential expression of c-fos, hsp70 and hsp27 after photothrombotic injury in the rat brain. Mol. Brain Res. 45, 239–246.

    Article  PubMed  CAS  Google Scholar 

  85. Plumier, J. C. L., David, J. C., Robertson, H. A., and Currie, R. W. (1997) Cortical application of potassium chloride induces the low molecular weight heat shock protein (Hsp27) in astrocytes. J. Cereb. Blood Flow Metab. 17, 781–790.

    Article  PubMed  CAS  Google Scholar 

  86. Kato, H., Kogure, K., Liu, X-H., Araki, T., Kato, K., and Itoyama, Y. (1995) Immunohistochemical localization of the low molecular weight stress protein Hsp27 following focal cerebral ischemia in the rat. Brain Res. 679, 1–7.

    Article  PubMed  CAS  Google Scholar 

  87. Kato, H., Liu, Y., Kogure, K., and Kato, K. (1994) Induction of 27-kDa heat shock protein following cerebral ischemia in a rat model of ischemic tolerance. Brain Res. 634, 235–244.

    Article  PubMed  CAS  Google Scholar 

  88. Abe, H. and Nowak, T. S., Jr. (2000) Postischemic temperature as a modulator of the stress response in brain: dissociation of heat shock protein 72 induction from ischemic tolerance after bilateral carotid artery occlusion in the gerbil. Neurosci. Lett. 295, 54–58.

    Article  PubMed  CAS  Google Scholar 

  89. Abe, H. and Nowak, T. S., Jr. (1996) Gene expression and induced ischemic tolerance following brief insults. Acta Neurobiol. Exp. (Warsz.) 56, 3–8.

    CAS  Google Scholar 

  90. Sommer, C., Gass, P., Kiessling, M. (1995) Selective c-JUN expression in CA1 neurons of the gerbil hippocampus during and after acquisition of an ischemia-tolerant state. Brain Pathol. 5, 135–144.

    Article  PubMed  CAS  Google Scholar 

  91. Belayev, L., Ginsberg, M. D., Alonso, O. F., Singer, J. T., Zhao, W., Busto, R. (1996) Bilateral ischemic tolerance of rat hippocampus induced by prior unilateral transient focal ischemia: relationship to c-fos mRNA expression. Neuroreport 8, 55–59.

    Article  PubMed  CAS  Google Scholar 

  92. Massa, S. M., Swanson, R. A., Sharp, F. R. (1996) The stress gene response in brain. Cerebrovasc. Brain Metab. Rev. 8, 95–158.

    PubMed  CAS  Google Scholar 

  93. Morimoto, R. I. and Santoro, M. G. (1998) Stress-inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection. Nat. Biotechnol. 16, 833–838.

    Article  PubMed  CAS  Google Scholar 

  94. Paschen, W. and Doutheil, J. (1999) Disturbances of the functioning of endoplasmic reticulum: a key mechanism underlying neuronal cell injury. J. Cereb. Blood Flow Metab. 19, 1–18.

    Article  PubMed  CAS  Google Scholar 

  95. Kirino, T., Tsujita, Y., and Tamura, A. (1991) Induced tolerance to ischemia in gerbil hippocampal neurons. J. Cereb. Blood Flow Metab. 11, 299–307.

    PubMed  CAS  Google Scholar 

  96. Kato, H., Liu, Y., Araki, T., Kogure, K. (1992) MK-801, but not anisomycin, inhibits the induction of tolerance to ischemia in the gerbil hippocampus. Neurosci. Lett. 139, 118–121

    Article  PubMed  CAS  Google Scholar 

  97. Bond, A., Lodge, D., Hicks, C. A., Ward, M. A., O’Neill, M. J. (1999) NMDA receptor antagonism, but not AMPA receptor antagonism, attenuates induced ischemic tolerance in the gerbil hippcampus. Eur. J. Pharmacol. 380, 91–99.

    Article  PubMed  CAS  Google Scholar 

  98. Lobhert D. and Choi, D. W. (1996) Preincubation with protein synthesis inhibitors protects cortical neurons against oxygen-glucose deprivation-induced death. Neuroscience 72, 335–341.

    Article  Google Scholar 

  99. Yagita, Y., Kitagawa, K., Ohtsuki, T., Tanaka, S., Hori, M., Matsumoto, M. (2001) Induction of the HSP110/105 family in the rat hippocampus in cerebral ischemia and ischemic tolerance. J. Cereb. Blood Flow Metab. 21, 811–819.

    Article  PubMed  CAS  Google Scholar 

  100. Mullins, P. G., Reid, D. G, Hockings, P. D., et al. (2001) Ischemic preconditioning in the rat brain: a longitudinal magnetic resonance imaging (MRI) study. NMR Biomed. 14, 204–209.

    Article  PubMed  CAS  Google Scholar 

  101. Purcell, J. E., Lenhard, S. C, White, R. F., Schaeffer, T., Barone, F. C., and Chandra, S. (2003) Strain-dependent response to cerebral ischemic preconditioning: Differences between spontaneously hypertensive and stroke-prone spontaneously hypertensive rats. Neurosci. Lett. 339, 151–155.

    Article  PubMed  CAS  Google Scholar 

  102. Masada, T., Hua, Y., Xi, G., Ennis, S. R., Keep, R. F. (2001) Attenuation of ischemic brain edema and cerebrovascular injury after ischemic preconditioning in the rat. J. Cereb. Blood Flow Metab. 21, 22–33.

    Article  PubMed  CAS  Google Scholar 

  103. Barone, F. C, Maguire, S., Strittmatter, R., et al. (2001) Longitudinal MRI measures brain injury and its resolution: reduced neurological recovery post-stroke and decreased brain tolerance following ischemic preconditioning in stroke-prone rats. J. Cereb. Blood Flow Metab. 21(suppl. 1), S230.

    Google Scholar 

  104. Maguire, S., Stritmatter, R., Chandra Barone, F. C. (2003) Stroke Prone Rats Exhibit Prolonged Neurological Deficits Indicating Disruption of Post-Stroke Brain Recovery. Neurosci. Lett. 339, 151–159.

    Google Scholar 

  105. Volpe, B. R., Pulsinelli, W. A., Tribuna, J., Davis, H. P. (1984) Behavioral performance of rats following transient forebrain ischemia. Stroke 15, 558–562.

    PubMed  CAS  Google Scholar 

  106. Kiyota, Y., Miyamoto, M., and Nagaoka, A. (1991) Relationship between brain damage and memory impairment in rats exposed to transient forebrain ischemia. Brain Res. 538, 295–302.

    Article  PubMed  CAS  Google Scholar 

  107. Ohno, M. and Watanabe, S. (1996) Ischemic tolerance to memory impairment associated with hippocampal neuronal damage after transient cerebral ischemia in rats. Brain Res. Bull. 40, 229–236.

    Article  PubMed  CAS  Google Scholar 

  108. Sommer, C., Goss, P., Kiessling, M. (1995) Selective c-Jun expression in CA1 neurons og the gerbil hyppocampus during and after acquisition of an ischemic tolerant state. Brain Pathol. 58, 135–144.

    Article  Google Scholar 

  109. Beleyev, B., Ginsberg, M. D., Alonso, O. C., Sungan, J. T., Zhao, W., Busto, R. (1996) Bilateral ischemic tolerance of rat hippocampus induced by prior unilateral focal ischemia: Relations to c-fos expression. Neuroreport 8, 55–59.

    Article  Google Scholar 

  110. Ikeda, J., Nakajima, T., Osborne, O. C, Mies, G., Nowak, T. S. (1994) Coexpression of c-fos and hsp70 mRNAs in gerbil brain after ischemia: induction threshold, distribution and time course evaluated by in situ hybredization. Mol. Brain Res. 26, 249–258.

    Article  PubMed  CAS  Google Scholar 

  111. Kindy, M. S., Carney, J. P., Dempsey, R. J., Carney, J. M. (1991) Ischemic induction of protooncogene expression in gerbil brain. J. Mol. Neurosci. 2, 217–228.

    PubMed  CAS  Google Scholar 

  112. Nowak, T. S., Ikeda, J., Nakajima, T. (1990) 70 kilodalton heat shock protein and c-fos gene expression following transient ischemia. Stroke 21(suppl. Ill), 107–111.

    Google Scholar 

  113. Wang, X. K., Yue, T. L., Young, P. R., Barone, F. C, Feuerstein, G. Z. (1995) Expression of interleukin 6, c-fos and zif268 mRNA in rat ischemic cortex. J. Cereb. Blood Flow Metab. 15, 166–171.

    PubMed  CAS  Google Scholar 

  114. Shamloo, M. and Wieloch, T. (1999) Changes in protein tyrosine phosphorylation in the rat brain after cerebral ischemia in a model of ischemic tolerance. J. Cereb. Blood Flow Metab. 19, 173–183.

    Article  PubMed  CAS  Google Scholar 

  115. Shamloo, M., Kamme, F., Wieloch, T. (2000) Subcellular distribution and autophosphorylation of calcium/calmodulin-dependent protein kinase II-α in rat hippocampus in a model of ischemic tolerance. Neuroscience 96, 665–674.

    Article  PubMed  CAS  Google Scholar 

  116. Shamloo, M., Rytter, A., Wieloch, T. (1999) Activation of the extracellular signal-regulated protein kinase cascade in the hippocampal CA1 region in a rat model of global cerebral ischemic preconditioning. Neuroscience 93, 81–88.

    Article  PubMed  CAS  Google Scholar 

  117. Yano, S., Morioka, M., Fukunaga, K., et al. (2001) Activation of Akt/protein kinase B contributes to induction of ischemic tolerance in the CA1 subfield of gerbil hippocampus. J. Cereb. Blood Flow Metab. 21, 351–360.

    Article  PubMed  CAS  Google Scholar 

  118. Tomasevic, G., Shamloo, M., Israeli, D., Wieloch, T. (1999) Activation of p53 and its target genes p21(WAF1/Cip1) and PAG608/Wig-1 in ischemic preconditioning. Brain Res. Mol. 70, 304–313.

    Article  CAS  Google Scholar 

  119. Walton, M. R. and Dragynow, M. R. (2000) Is CREB a key to neuronal survival? Trends Neurosci. 23, 48–53.

    Article  PubMed  CAS  Google Scholar 

  120. Shimazaki, K., Ishida, A., Kawai, N. (1994) Increase in bcl-2 oncoprotein and the tolerance to ischemia-induced neuronal death in the gerbil hippocampus. Neurosci. Res. 20, 95–99.

    Article  PubMed  CAS  Google Scholar 

  121. Chen, D., Minami, M., and Henshall D. C. (2003) Upregulation of mitochondrial base-excision repair capability within rat brain after brief ischemia. J. Cereb. Blood Flow Metab. 23, 88–98.

    Article  PubMed  CAS  Google Scholar 

  122. Shimizu, S., Nagayama, T., Jin, K. L., et al. (2001) bcl-2 Antisense treatment prevents induction of tolerance to focal ischemia in the rat brain. J. Cereb. Blood Flow Metab. 21, 233–243.

    Article  PubMed  CAS  Google Scholar 

  123. Kato, H., Kogure, K., Araki, T., and Itoyama, Y. (1994) Astroglial and microglial reactions in the gerbil hippocampus with induced ischemic tolerance. Brain Res. 664, 69–76.

    Article  PubMed  CAS  Google Scholar 

  124. Liu, J., Bartels, M., Lu, A., Sharp, F. R. (2001) Microglia/macrophages proliferate in striatum and neocortex but not in hippocampus after brief global ischemia that produces ischemic tolerance in gerbil brain. J. Cereb. Blood Flow Metab. 21, 361–373.

    Article  PubMed  CAS  Google Scholar 

  125. Wrang, M. L., Moller, F., Alsbo, C. W., Diemer, N. H. (2001) Changes in gene expression following induction of ischemic tolerance in rat brain; detection and verification. J. Neurosci Res. 65, 54–58.

    Article  PubMed  CAS  Google Scholar 

  126. MacManus, J. P. and Linnik, M. D. (1997) Gene expression induced by cerebral ischemia: an apoptotic perspective. J. Cereb. Blood Flow Metab. 17, 815–832.

    Article  PubMed  CAS  Google Scholar 

  127. Abe, H. and Nowak, T. S. Jr. (1996) The stress response and its role in cellular defense mechanisms after ischemia. Adv. Neurol. 71, 451–466.

    PubMed  CAS  Google Scholar 

  128. Graham, S. H. (2002) Expression of the proto-oncogene bcl-2 is increased in the rat brain following kainate-induced seizures. Restor. Neurol. Neurosci. 9, 243–250.

    Google Scholar 

  129. Plumier, J. C., Krueger, A. M., Currie, R. W., Kontoyiannis, D., Kollias, G., Pagoulatos, G. N. (1997) Transgenic mice expressing the human inducible Hsp70 have hippocampal neurons resistant to ischemic injury. Cell Stress Chaperones 2, 162–167.

    Article  PubMed  CAS  Google Scholar 

  130. Rajdev, S., Hara, K., Kokubo, Y., et al. (2000) Mice overexpressing rat heat shock protein 70 are protected against cerebral infarction. Ann. Neurol. 47, 782–791.

    Article  PubMed  CAS  Google Scholar 

  131. Yenari, M. A., Fink, S. L., Sun, G. H., et al. (1998) Gene therapy with HSP72 is neuroprotective in rat models of stroke and epilepsy. Ann. Neurol. 44, 58–584,150:591.

    Article  Google Scholar 

  132. Sakaki, T., Yamada, K., Otsuki, H., Yuguchi, T., Kohmura, E., Hayakawa, T. (1995) Brief exposure to hypoxia induces bFGF mRNA and protein and protects rat cortical neurons from prolonged hypoxic stress. Neurosci. Res. 23, 289–229.

    Article  PubMed  CAS  Google Scholar 

  133. Bruer, U., Weih, M. K., Isaev, N. K., et al. (1997) Induction of tolerance in rat cortical neurons: hypoxic preconditioning. FEBS Lett. 414, 117–121.

    Article  PubMed  CAS  Google Scholar 

  134. Grabb, M. C. and Choi, D. W (1999) Ischemic tolerance in murine cortical cell culture: critical role for NMDA receptors. J. Neurosci. 19, 1657–1662.

    PubMed  CAS  Google Scholar 

  135. Ravati, A., Ahlemeyer, B., Becker, A., Krieglstein, J. (2000) Preconditioning-induced neuroprotection is mediated by reactive oxygen species. Brain Res. 866, 23–32.

    Article  PubMed  CAS  Google Scholar 

  136. Riepe, M. W., Esclaire, F., Kasischke, K., et al. (1997) Increased hypoxic tolerance by chemical inhibition of oxidative phosphorylation: “chemical preconditioning.” J. Cereb. Blood Flow Metab. 17, 257–264.

    Article  PubMed  CAS  Google Scholar 

  137. Shou, Y., Gunasekar, P. G., Borowitz, J. L., and Isom, G E. (2000). Cyanide-induced apoptosis involves oxidative-stress-activated NF-kappaB in cortical neurons. Toxicol. Appl. Pharmacol. 164, 196–205.

    Article  PubMed  CAS  Google Scholar 

  138. Wick, A., Wick, W., Waltenberger, J. (2002) Neuroprotection by hypoxic preconditioning requires sequential activation of vascular endothelial growth factor receptor and Akt. J. Neurosci. 22, 6401–6407.

    PubMed  CAS  Google Scholar 

  139. McLaughlin, B., Hartnett, K. A., Erhardt, J. A., et al. (2003) Critical role of sublethal caspase activation during ischemic preconditioning. Proc. Natl. Acad. Sci. USA 100, 715–720.

    Article  PubMed  CAS  Google Scholar 

  140. Das, D. K., Engelman, R. M., and Maulik, N. (1999). Oxygen free radical signaling in ischemic preconditioning. Ann. NY Acad. Sci. 874, 49–65.

    Article  PubMed  CAS  Google Scholar 

  141. Baines, C. P., Goto, M., Downey, J. M. (1997) Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium. J. Mol. Cell. Cardiol. 29, 207–216.

    Article  PubMed  CAS  Google Scholar 

  142. Vanden Hoek, T. L., Becker, L. B., Shao, Z., Li, C., Schumaker, P. T. (1998) Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J. Biol. Client. 273, 18092–18098.

    Article  Google Scholar 

  143. Riepe, M. W., Esclaire, F., Kasischke, K., et al. (1997) Increased hypoxic tolerance by chemical inhibition of oxidative phosphorylation: “chemical preconditioning.” J. Cereb. Blood Flow Metab. 17, 257–264.

    Article  PubMed  CAS  Google Scholar 

  144. Cohen, M. V., Baines, C. P., Downey, J. M. (2000) Ischemic preconditioning: from adenosine receptor of KATP channel. Annu. Rev. Physiol. 62, 79–109.

    Article  PubMed  CAS  Google Scholar 

  145. Kaltschmidt, B., Uherek, M., Wellmann, H., Volk, B., Katschmidt, C. (1999) Inhibition of NF-κB potentiates amyloid β-mediated neuronal apoptosis. Proc. Natl. Acad. Sci. USA 96, 9409–9414.

    Article  PubMed  CAS  Google Scholar 

  146. Forbes, R. A., Steenbergen, C., and Murphy, E. (2001). Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism. [see comments]. Circ. Res. 88, 802–809.

    Article  PubMed  CAS  Google Scholar 

  147. Heurteaux, C., Lauritzin, I., Widman, C., Lazdunski, M. (1995) Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning. Proc. Natl. Acad Sci. USA 92:4666–4670.

    Article  PubMed  CAS  Google Scholar 

  148. Abele, A. E. and Miller, R. J. (1990) Potassium channel activators abolish excitotoxicity in cultured hippocampal pyramidal neurons. Neurosci. Lett. 115, 195–200.

    Article  PubMed  CAS  Google Scholar 

  149. Barone, F. C., Hillegass, L. M., Tzimas, M. N., et al. (1995) Time-related changes in myeloperoxidase activity and leukotriene B4 receptor binding reflect leukocyte influx in cerebral focal stroke. Mol. Chem. Neuropathol. 24, 13–30.

    Article  PubMed  CAS  Google Scholar 

  150. Barone, F. C., Clark, R. K., Price, W. J., et al. (1993) Neuron specific enolase increases in cerebral and systemic circulation following focal ischemia. Brain Res. 623, 77–82.

    Article  PubMed  CAS  Google Scholar 

  151. Barone, F. C, Price, W. J., White, R. F., Willette, R. N., Feuerstein, G. Z. (1992) Genetic hypertension and increased susceptibility to cerebral ischemia. Neurosci. Biobehav. Rev. 16, 219–233.

    Article  PubMed  CAS  Google Scholar 

  152. Lin, T. N., He, Y. Y., Wu, G., Khan, M., Hsu, C. Y. (1993) Effect of brain edema on infarct volume in a focal cerebral ischemia model in rats. Stroke 24, 117–121.

    PubMed  CAS  Google Scholar 

  153. Swanson, R. A., Morton, M. T., Tsao-Wu, G., Salvalos, R. H., Davidson, C., Sharp, F. R. (1990) A semiautomated method for measuring brain infarct volume. J. Cereb. Blood Flow Metab. 10, 290–293.

    PubMed  CAS  Google Scholar 

  154. Clark, R. K., Lee, E. V., White, R. F., Jonak, Z. L., Feuerstein, G. Z., Barone, F. C. (1994) Reperfusion following focal stroke hastens inflammation and resolution of ischemic injured tissue. Brain Res. Bull. 35, 387–391.

    Article  PubMed  CAS  Google Scholar 

  155. Davis, E. C., Popper, P., Gorski, R. A. (1996) The role of apoptosis in sexual differentiation of the rat sexually dimorphic nucleus of the preoptic area. Brain Res. 734, 10–18.

    Article  PubMed  CAS  Google Scholar 

  156. Lobner, D. and Choi, D. W. (1996) Preincubation with protein synthesis inhibitors protects cortical neurons against oxygen-glucose deprivation-induced death. Neuroscience 72, 335–341.

    Article  PubMed  CAS  Google Scholar 

  157. Du, C., Hu, R., Csernansky, C., Hsu, C., Choi, D. (1996) Very delayed infarction after mild focal cerebral ischemia: a role for apoptosis? J. Cereb. Blood Flow Metab. 16, 15–201.

    Google Scholar 

  158. Wang, X. K., Barone, F. C., Aiyar, N. V., and Feuerstein, G. Z. (1997) Interleukin-1 receptor and receptor antagonist gene expression after focal stroke. Stroke 28, 155–162.

    PubMed  CAS  Google Scholar 

  159. Wang, X. K., Li, X., Currie, R. W., Willette, R. N., Barone, F. C, and Feuerstein, G. Z. (2000) Application of real-time polymerase chain reaction to quantitate the induced expression of interleukin1p mRNA in ischemic brain tolerance. J. Neurosci. Res. 59, 238–246.

    Article  PubMed  CAS  Google Scholar 

  160. Harnett, K. A., Stout, A. K., Rajdev, S., Rosenberg, P. A., Reynolds, I. J., Aizenman, E. (1997) NMDA receptor-mediated neurotoxicity: a paradoxical requirement for extracellular Mg2+/Ca2+free solutions in rat cortical neurons in vitro. J. Neurochem. 68, 1836–1845.

    Article  Google Scholar 

  161. Houenou, L. J., Li, L., Lei, M., Kent, C. R., and Tytell, M. (1996) Exogenous heat shock cognate protein Hsc 70 prevents axotomy-induced death of spinal sensory neurons. Cell Stress Chaperones 1, 161–166.

    Article  PubMed  CAS  Google Scholar 

  162. Davis, E. C, Popper, P., and Gorski, R. A. (1996) The role of apoptosis in sexual differentiation of the rat sexually dimorphic nucleus of the preoptic area. Brain Res. 734, 10–18.

    Article  PubMed  CAS  Google Scholar 

  163. Adrain, C. and Martin, S. J. (2001) The mitochondrial apoptosome: a killer unleashed by the cytochrome seas. Trends Biochem. Sci. 26, 390–397.

    Article  PubMed  CAS  Google Scholar 

  164. Stroemer, R. P., Kent, T. A., Hulsebosch, C. E. (1995) Neocortical neuronal sprouting, synaptogenesis. and behavioral recovery after neocortical infarction in rats. Stroke 26, 2135–2144.

    PubMed  CAS  Google Scholar 

  165. Kawamata, T., Dietrich, W. D., Schallert, T., et al. (1997) Intracisternal basic fibroblast growth factor enhances functional recovery and up-regulates the expression of a molecular marker of neuronal sprouting following focal cerebral infarction. Proc. Natl. Acad. Sci. USA 94, 8179–8184.

    Article  PubMed  CAS  Google Scholar 

  166. Das, D. K., Engelman, R. M., Kimura, Y. (1993) Molecular adaptation of cellular defences following preconditioning of the heart by repeated ischemia. Cardiovasc. Res. 27, 578–584.

    Article  PubMed  CAS  Google Scholar 

  167. Sun, J. Z., Tang, X. L., Knowlton, A. A., Park, S. W., Qui, Y., Bolli, R. (1995) Late preconditioning against myocardial stunning. An endogenous protective mechanism that confers resistance to postischemic dysfunction 24 h after brief ischemia in conscious pigs. J. Clin. Invest. 95, 388–403.

    Article  PubMed  CAS  Google Scholar 

  168. Hartl, F. U. (1996) Molecular chaperones in cellular protein folding. Nature 381, 571–580.

    Article  PubMed  CAS  Google Scholar 

  169. Stroemer, R. P. and Rothwell, N. J. (1997) Cortical protection by localized striatal injections of IL-1ra following cerebral ischemia in the rat. J. Cereb. Blood Flow Metab. 17, 597–604.

    Article  PubMed  CAS  Google Scholar 

  170. Sagar, S. M., Sharp, F. R., Curran, T. (1988) Expression of c-fos protein in the brain; metabolic mapping at the cellular level. Science 240, 1328–1331.

    Article  PubMed  CAS  Google Scholar 

  171. Morgan, J. I. and Curran, T. (1991) Stimulus-transcription coupling in the nervous system: involvement in the inducible protooncogenes fos and jun. Annu. Rev. Neurosci. 14, 421–451.

    Article  PubMed  CAS  Google Scholar 

  172. Curran, T. and Franza, B. R. (1988) Fos and Jun: the AP-1 connection. Cell 55, 395–397.

    Article  PubMed  CAS  Google Scholar 

  173. Christy, B. and Nathans, D. (1989) DNA binding site of the growth factor-inducible protein Zif268. Proc. Natl. Acad. Sci. USA 86, 8737–8741.

    Article  PubMed  CAS  Google Scholar 

  174. Hsu, C. Y., An, G., Liu, J. S., Xue, J. J., He, Y. Y., and Lin, T. N. (1989) Expression of immediate early gene and growth factor mRNAs in a focal cerebral ischemia model in the rat. Stroke 24, I-78–I-81.

    Google Scholar 

  175. Onodera, H., Kogure, K., Ono, Y., Igarashi, K., Kiyota, Y., Nagaoka, A. (1989) Proto-oncogene c-fos is transiently induced in the rat cerebral cortex after fore-brain ischemia. Neurosci. Lett. 98, 101–104.

    Article  PubMed  CAS  Google Scholar 

  176. Uemura, Y., Kowall, N. W., Moskowitz, M. A. (1991) Focal ischemia in rats causes time-dependent expression of c-fos protein immunoreactivity in widespread regions of ipsilateral cortex. Brain Res. 552, 99–105.

    Article  PubMed  CAS  Google Scholar 

  177. Kato, H., Kogure, K., Araki, T., Itoyama, Y. (1995) Induction of Jun-like immunoreactivity in astrocytes in gerbil hippocampus with ischemic tolerance. Neurosci. Lett. 189, 13–15.

    Article  PubMed  CAS  Google Scholar 

  178. Nowak, T. S., Osborne, O. C, Suga, S. (1993) Stress protein and proto-oncogene expression as indicators of neuronal pathophysiology after ischemia. Prog. Brain Res. 96, 195–208.

    Article  CAS  Google Scholar 

  179. An, G., Lin, T. N., Liu, J. S., Xue, J. J., He, Y. Y., Hsu, C. Y. (1993) Expression of c-fos and c-jun family genes after focal cerebral ischemia. Ann. Neurol. 33, 457–464.

    Article  PubMed  CAS  Google Scholar 

  180. Woodburn, V. L., Hayward, N. J., Poat, J. A., Woodruff, G. N., Hughes, J. (1993) The effect of dizocipine and enadoline on immediate early gene expression in the gerbil global ischemia model. Neuropharmacology 32, 1047–1059

    Article  PubMed  CAS  Google Scholar 

  181. Kitagawa, K., Matsumoto, M., Kuwabara, K., et al. (1991) Hyperthermia-induced neuronal protection against ischemic injury. J. Cereb. Blood Flow Metab. 11, 449–452.

    PubMed  CAS  Google Scholar 

  182. Riepe, M. W., Esclaire, F., Kasischke, K., et al. (1997) Increased hypoxic tolerance by chemical inhibition of oxidative phosphorylation; “chemical preconditioning.” J. Cereb. Blood Flow Metab. 17, 257–264.

    Article  PubMed  CAS  Google Scholar 

  183. Matsushima, K., Hogan, M. J., Hakim, A. M. (1996) Cortical spreading depression protects against subsequent focal cerebral ischemia in rats. J. Cereb. Blood Flow Metab. 16, 221–226.

    Article  PubMed  CAS  Google Scholar 

  184. Kobayashi, S., Harris, V. A., Welsh, F. A. (1995) Spreading depression induces cortical neurons to ischemia in rat brain. J. Cereb. Blood Flow Metab. 15, 721–727.

    PubMed  CAS  Google Scholar 

  185. Kraig, R. P., Dong, L. M., Thisted, R., Jaeger, C. B. (1991) Spreading depression increases immunohistochemical staining of glial fibrillary acidic protein. J. Neurosci. 11, 2187–2198.

    PubMed  CAS  Google Scholar 

  186. Toyoda, T., Kassell, N. F., Lee, K. S. (1997) Induction of ischemic tolerance and antioxidant activity by brief focal ischemia. Neuroreport 8, 847–851.

    Article  PubMed  CAS  Google Scholar 

  187. Takeda, A., Onodera, H., Sugimoto, A., Kogure, K., Obinata, M., Shibahara, S. (1993) Coordinated expression of messenger RNAs for nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3 in the rat hippocampus following transient forebrain ischemia. Neuroscience 55, 23–31.

    Article  PubMed  CAS  Google Scholar 

  188. Chen, J. and Simon, R. (1997) Ischemic tolerance in the brain. Neurology 48, 306–311.

    PubMed  CAS  Google Scholar 

  189. Akimitsu, T., Gute, D. C., Korthuis, R. J. (1996) Ischemic preconditioning attenuates postischemic leukocyte adhesion and emigration. Am. J. Physiol. 40, H2052–H2059.

    Google Scholar 

  190. Hakim, A. M. (1994) Could transient ischemic attack have a cerebroprotective role? Stroke 25, 715–716.

    PubMed  CAS  Google Scholar 

  191. Alteri, M., Melle, G. V., Bogousslavsky, J. (1998) Do transient ischemic attacks protect from severe subsequent stroke? Stroke 29, 320.

    Google Scholar 

  192. Tomioka, C., Nishioka, K., and Kogure, K. (1993) A comparison of induced heat-shock protein in neurons destined to survive and those destined to die after transient ischemia in rats. Brain Res. 612, 216–220.

    Article  PubMed  CAS  Google Scholar 

  193. Armstrong, J. N., Plumier, J. C. L., Robertson, H. A., and Currie, R. W. (1996) The inducible 70,000 molecular weight heat shock protein is expressed in the degenerating dentate hilus and piriform cortex after systemic administration of kainic acid in the rat. Neuroscience 74, 685–693.

    Article  PubMed  CAS  Google Scholar 

  194. Morimoto, R. I. (1993) Cells in stress: transcriptional activation of heat shock genes. Science 259, 1409–1410.

    Article  PubMed  CAS  Google Scholar 

  195. Herrera, D. G. and Cuello, A. C. (1992) MK-801 affects the potassium-induced increase of glial fibrillary acidic protein immunoreactivity in rat brain. Brain Res. 598, 286–293.

    Article  PubMed  CAS  Google Scholar 

  196. Vibulsreth, S., Hefti, F., Ginsberg, M. D., Dietrich, W. D., and Busto, R. (1987) Astrocytes protect cultured neurons from degeneration induced by anoxia. Brain Res. 422, 303–311.

    Article  PubMed  CAS  Google Scholar 

  197. Shigeno, T., Mima, T., Takakura, K., et al. (1991) Amelioration of delayed neuronal death in the hippocampus by nerve growth factor. J. Neurosci. 11, 2914–2919.

    PubMed  CAS  Google Scholar 

  198. Liu, D., Smith, D. L., Barone, F. C, et al. (1999) Astrocytic demise precedes neuronal death in focal ischemic rat brain. Mol. Brain Res. 68, 29–41.

    Article  PubMed  CAS  Google Scholar 

  199. Largo, C., Cuevas, P., and Herreras, O. (1996) Is glia dysfunction the initial cause of neuronal death in ischemic penumbra? Neurol. Res. 18, 445–448.

    PubMed  CAS  Google Scholar 

  200. Nakata, N., Kato, H. and Kogure, K. (1993) Protective effects of basic fibroblast growth factor against hippocampal neuronal damage following cerebral ischemia in the gerbil. Brain Res. 605, 458–464.

    Article  Google Scholar 

  201. Nicholls, D. and Attwell D. (1990) The release and uptake of excitatory amino acids. Trends Pharmacol. Sci. 11, 462–468.

    Article  PubMed  Google Scholar 

  202. Walz, W. (1989) Role of glial cells in the regulation of the brain ion microenvironment. Prog. Neurobiol. 33, 309–333.

    Article  PubMed  CAS  Google Scholar 

  203. Desagher, S., Glowinski, J., and Premont, J. (1996) Astrocytes protect neurons from hydrogen peroxide toxicity. J. Neurosci. 16, 2553–2562.

    PubMed  CAS  Google Scholar 

  204. Raps, S. P., Lai, J. C. K., Hertz, L., and Cooper, A. J. L. (1989) Glutathione is present in high concentrations in cultured astrocytes but not in cultured neurons. Brain Res. 493, 398–401.

    Article  PubMed  CAS  Google Scholar 

  205. Wilson, J.X. (1997) Antioxidant defense of the brain: a role for astrocytes. Can. J. Physiol. Pharmacol. 75, 1149–1163.

    Article  PubMed  CAS  Google Scholar 

  206. Toyoda, T., Kassell, N. F., and Lee, K. S. (1997) Induction of ischemic tolerance and antioxidant activity by brief focal ischemia. Neuroreport 8, 847–851.

    Article  PubMed  CAS  Google Scholar 

  207. Bonthius, D. J. and Steward, O. (1993) Induction of cortical spreading depression with potassium chloride upregulates levels of messenger RNA for glial fibrillary acidic protein in cortex and hippocampus: inhibition by MK-801. Brain Res. 618, 83–94.

    Article  PubMed  CAS  Google Scholar 

  208. Bonthius, D. J., Lothman, E. W., and Steward, O. (1995) The role of extracellular ionic changes in upregulating the mRNA for glial fibrillary acidic protein following spreading depression. Brain Res. 674, 314–328.

    Article  PubMed  CAS  Google Scholar 

  209. Kraig, R. P., Dong, L. M., Thisted, R., and Jaeger, C. B. (1991) Spreading depression increases immunohistochemical staining of glial fibrillary acidic protein. J. Neurosci. 11, 218772198.

    Google Scholar 

  210. Massa, S. M., Swanson, R. A., and Sharp, F. R. (1996) The stress gene response in brain. Cerebrovasc. Brain Met. Rev. 8, 95–158.

    CAS  Google Scholar 

  211. Sharp, F. R., Massa, S.M. and Swanson, R.A. (1999) Heat shock protein protection. Trends Neurosci. 22, 976–99.

    Article  Google Scholar 

  212. Wang, X. K., Li, X., Erhardt, J. A., Barone, F.C., Feuerstein, G Z. (2000) Detection of tumor necrosis factor-α mRNA induction in ischemic brain tolerance by means of real-time polymerase chain reaction. J. Cereb. Blood Flow Metab. 20, 15–20.

    Article  PubMed  Google Scholar 

  213. Ohtsuki, T., Ruetzler, C. A., Tasaki, K., and Hallenbeck, J. M. (1996) Interleukin-1 mediates induction of tolerance to global ischemia in gerbil hippocampus CA1 neurons. J. Cereb. Blood Flow Metab. 16, 1137–1142.

    Article  PubMed  CAS  Google Scholar 

  214. Strijbos, P. J. and Rothwell, N. J. (1995) Interleukin-1β attenuates excitatory amino acid-induced neurodegeneration in vitro: involvement of nerve growth factor. J. Neurosci. 15, 3468–3474.

    PubMed  CAS  Google Scholar 

  215. Wang, X-K., Yaish-Ohad, S., Li, X., Barone, F. C, and Feuerstein, G. Z. (1998) Use of suppression subtractive hybridization strategy for discovery of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) gene expression in ischemic tolerance. J. Cereb. Blood Flow Metab. 18, 1173–1177.

    Article  PubMed  CAS  Google Scholar 

  216. Blackstock, W.P. and Weir, M.P. (1999) Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol. 17, 121–127.

    Article  PubMed  CAS  Google Scholar 

  217. Brambrink, A. M., Schneider, A., Noga, H., et al. (2000). Tolerance-Inducing dose of 3-nitropropionic acid modulates bcl-2 and bax balance in the rat brain: a potential mechanism of chemical preconditioning. J. Cereb. Blood Flow Metab. 20, 1425–1436.

    Article  PubMed  CAS  Google Scholar 

  218. Sakaki, T., Yamada, K., Otsuki, H., Yuguchi, T., Kohmura, E., and Hayakawa, T. (1995) Brief exposure to hypoxia induces bFGF mRNA and protein and protects rat cortical neurons from prolonged hypoxic stress. Neurosci. Res. 23, 289–296.

    Article  PubMed  CAS  Google Scholar 

  219. Cohen, M. V., Baines, C. P., and Downey, J. M. (2000). Ischemic Preconditioning: From Adenosine Receptor to KATP Channel. Ann. Rev. Physiol. 62, 79–109.

    Article  CAS  Google Scholar 

  220. Dzeja, P. P. and Terzic, A. (1998). Phosphotransfer reactions in the regulation of ATP-sensitive K+ channels. FASEB J. 12, 523–529.

    PubMed  CAS  Google Scholar 

  221. Liu, Y., Gao, W. D., O’Rourke, B., and Marban, E. (1996). Synergistic modulation of ATP-sensitive K+ currents by protein kinase C and adenosine. Implications for ischemic preconditioning, Circ. Res. 78, 443–54.

    PubMed  CAS  Google Scholar 

  222. Liu, Y., Sato, T., O’Rourke, B., and Marban, E. (1998). Mitochondrial ATP-dependent potassium channels: novel effectors of cardioprotection? Circulation 97, 2463–2469.

    PubMed  CAS  Google Scholar 

  223. Grigoriev, S. M., Skarga, Y. Y., Mironova, G. D., and Marinov, B. S. (1999). Regulation of mitochondrial KATP channel by redox agents, Biochim. Biophys. Acta. 1410, 91–96.

    Article  PubMed  CAS  Google Scholar 

  224. Tokube, K., Kiyosue, T., and Arita, M. (1996). Openings of cardiac KATP channel by oxygen free radicals produced by xanthine oxidase reaction. Am. J. Physiol. 271, H478–H489.

    PubMed  CAS  Google Scholar 

  225. Pain, T., Yang, X. M., Critz, S. D., et al. (2000) Opening of mitochondrial K(ATP) channels triggers the preconditioned state by generating free radicals. Circ. Res. 87, 460–466.

    PubMed  CAS  Google Scholar 

  226. Poppe, M., Reimertz, C, Dussmann, H., et al. (2001) Dissipation of potassium and proton gradients inhibits mitochondrial hyperpolarization and cytochrome c release during neural apoptosis. J. Neurosci. 21, 4551–4563.

    PubMed  CAS  Google Scholar 

  227. Yu, S. P., Yeh, C. H., Sensi, S. L., et al. (1997) Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 278, 114–117.

    Article  PubMed  CAS  Google Scholar 

  228. Debska, G., May, R., Kicinska, A., Szewczyk, A., Elger, C. E., and Kunz, W. S. (2001) Potassium channel openers depolarize hippocampal mitochondria. Brain Res. 892, 42–50.

    Article  PubMed  CAS  Google Scholar 

  229. Xu, M., Wang, Y., Ayub, A., and Ashraf, M. (2001) Mitochondrial K(ATP) channel activation reduces anoxic injury by restoring mitochondrial membrane potential. Am. J. Physiol. 281, H1295–H12303.

    CAS  Google Scholar 

  230. Li, P., Nijhawan, D., Budihardjo, I., et al. (1997) Cytochrome c and dATP-de-pendent formation of Apaf-l/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–89.

    Article  PubMed  CAS  Google Scholar 

  231. Zou, H., Henzel, W. J., Liu, X., Lutschg, A., and Wang, X. (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405–413.

    Article  PubMed  CAS  Google Scholar 

  232. Adrain, C. and Martin, S. J. (2001) The mitochondrial apoptosome: a killer unleashed by the cytochrome seas. Trends Biochem. Sci. 26, 390–397.

    Article  PubMed  CAS  Google Scholar 

  233. Bellido, T., Huening, M., Raval-Pandya, M., Manolagas, S. C, and Christakos, S. (2000) Calbindin-D28k is expressed in osteoblastic cells and suppresses their apoptosis by inhibiting caspase-3 activity. J. Biol. Client. 275, 26328–26332.

    Article  CAS  Google Scholar 

  234. Dowd, D., MacDonald, P., Komm, B., Haussler, M., and Miesfeld, R. (1992) Stable expression of the calbindin-D28K complementary DNA interferes with the apoptotic pathway in lymphocytes. Mol. Endocrinol. 6, 1843–1848.

    Article  PubMed  CAS  Google Scholar 

  235. Antonsson, B. and Martinou, J. C. (2000) The Bcl-2 protein family. Exp. Cell Res. 256, 50–57.

    Article  PubMed  CAS  Google Scholar 

  236. Roy, N., Deveraux, Q. L., Takahashi, R., Salvesen, G. S., and Reed, J. C. (1997) The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J. 16, 6914–6925.

    Article  PubMed  CAS  Google Scholar 

  237. Srinivasula, S. M., Hegde, R., Saleh, A., et al. (2001) A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410, 112–116.

    Article  PubMed  CAS  Google Scholar 

  238. Garrido, C, Bruey, J. M., Fromentin, A., Hammann, A., Arrigo, A. P., and Solary, E. (1999) HSP27 inhibits cytochrome c-dependent activation of procaspase-9. FASEB J. 13, 2061–2070.

    PubMed  CAS  Google Scholar 

  239. Garrido, C, Mehlen, P., Fromentin, A., et al. (1996) Inconstant association between 27-kDa heat-shock protein (Hsp27) content and doxorubicin resistance in human colon cancer cells. The doxorubicin-protecting effect of Hsp27. Eur. J. Biochem. 237, 653–659.

    Article  PubMed  CAS  Google Scholar 

  240. Garrido, C, Ottavi, P., Fromentin, A., et al. (1997) HSP27 as a mediator of confluence-dependent resistance to cell death induced by anticancer drugs. Cancer Res. 57, 2661–2667.

    PubMed  CAS  Google Scholar 

  241. Mehlen, P., Kretz-Remy, C, Preville, X., and Arrigo, A. P. (1996) Human hsp27, Drosophila hsp27 and human αB-crystallin expression-mediated increase in glutathione is essential for the protective activity of these proteins against TNFα-induced cell death. EMBO J. 15, 2695–2706.

    PubMed  CAS  Google Scholar 

  242. Yenari, M. A., Fink, S. L., Sun, G. H., et al. (1998) Gene therapy with HSP72 is neuroprotective in rat models of stroke and epilepsy. Ann. Neurol. 44, 584–591.

    Article  PubMed  CAS  Google Scholar 

  243. Sharp, F. R., Massa, S. M., and Swanson, R. A. (1999) Heat-shock protein protection. Trends Neurosci. 22, 97–99.

    Article  PubMed  CAS  Google Scholar 

  244. Pringle, A. K., Angunawela, R., Wilde, G. J., Mepham, J. A., Sundstrom, L. E., and Iannotti, F. (1997) Induction of 72 kDa heat-shock protein following sublethal oxygen deprivation in organotypic hippocampal slice cultures. Neuropathol. Appl. Neurobiol. 23, 289–298.

    Article  PubMed  CAS  Google Scholar 

  245. Rajdev, S., Hara, K., Kokubo, Y., et al. (2000) Mice overexpressing rat heat shock protein 70 are protected against cerebral infarction. Ann. Neurol. 47, 782–791.

    Article  PubMed  CAS  Google Scholar 

  246. Goldberg, M. P., Weiss, J. H., Pham, P. C., and Choi, D. W. (1987) N-methyl-D-aspartate receptors mediate hypoxic neuronal injury in cortical culture. J. Pharmacol. Exp. Ther. 243, 784–791.

    PubMed  CAS  Google Scholar 

  247. Patel, M. N., Peoples, R. W., Yim, G. K., and Isom, G. E. (1994) Enhancement of NMDA-mediated responses by cyanide. Neurochem. Res. 19, 1319–1323.

    Article  PubMed  CAS  Google Scholar 

  248. Zeevalk, G. D. and Nicklas, W. J. (1991) Mechanisms underlying initiation of excitotoxicity associated with metabolic inhibition. J. Pharmacol. Exp. Therap. 257, 870–878.

    CAS  Google Scholar 

  249. Guo, Q., Christakos, S., Robinson, N., and Mattson, M. P. (1998) Calbindin D28k blocks the proapoptotic actions of mutant presenilin 1: reduced oxidative stress and preserved mitochondrial function. Proc. Natl. Acad. Sci. USA 95, 3227–3232.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Barone, F.C. (2005). Endogenous Brain Protection. In: Read, S.J., Virley, D. (eds) Stroke Genomics. Methods in Molecular Medicine, vol 104. Humana Press. https://doi.org/10.1385/1-59259-836-6:105

Download citation

  • DOI: https://doi.org/10.1385/1-59259-836-6:105

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-333-6

  • Online ISBN: 978-1-59259-836-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics