Skip to main content

Introduction to Stroke Genomics

  • Protocol
Stroke Genomics

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 104))

Abstract

Translation of the explosion in knowledge of acute ischemic stroke into satisfactory treatment regimens has yet to happen. At present tPA, intra-arterial prourokinase and low-molecular-weight heparin form the vanguard for therapeutic intervention, yet these treatments have a limited therapeutic window.

Part of this expansion in understanding has been driven by the contribution of stroke genetics and genomics. However, despite the enormous preclinical and clinical information of receptors, enzymes, second messenger systems, and so forth, that are implicated in stroke pathophysiology, delivery of novel drug treatment has been slow.

This introductory chapter discusses the multiple sources of clinical and preclinical genetic information. It will describe the importance of integrating expression information into multiple preclinical models with temporal and spatial roles in lesion pathology and, furthermore developing an understanding of function in the clinic before claiming a role in ischemic stroke.

The goal of such a holistic integration of information is to increase the yield from current datasets of gene expression and ultimately to help expand the choice of treatment available to the physician and patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stephenson, J. (1998) Rising stroke rates spur efforts to identify risks, prevent disease. JAMA 279, 1239–1240.

    Article  PubMed  CAS  Google Scholar 

  2. Fisher, M. and Bogousslavsky, J. (1998) Further evolution toward effective therapy for acute ischemic stroke. JAMA 279, 1298–1303.

    Article  PubMed  CAS  Google Scholar 

  3. Alberts, M. J. (2001) Genetics update: impact of the human genome projects and identification of a stroke gene. Stroke 32, 1239–1241.

    PubMed  CAS  Google Scholar 

  4. Kannel, W. B., Wolf, P. A., Verter, J., McNamara, and P. M. (1970) Epidemiologic assessment of the role of blood pressure in stroke. The Framingham Study. JAMA 214, 301–310.

    Article  PubMed  CAS  Google Scholar 

  5. Brass, L. M., Isaacsohn, J. L., Merikangas, K. R., and Robinette, C. D. (1992) A study of twins and stroke. Stroke 23, 221–223.

    PubMed  CAS  Google Scholar 

  6. Brass, L. M. (2000) The impact of cerebrovascular disease. Diabetes Obes. Metab. 2(suppl. 2), S6–S10.

    Article  PubMed  Google Scholar 

  7. Meschia, J. F. (2002) Addressing the heterogeneity of the ischemic stroke pheno-type in human genetics research. Stroke 33, 2770–2774.

    Article  PubMed  Google Scholar 

  8. Tournier-Lasserve, E., Joutel, A., Melki, J., et al. (1993) Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy maps to chromosome 19q12. Nat. Genet. 3, 256–259.

    Article  PubMed  CAS  Google Scholar 

  9. Hirano, M. and Pavlakis, S. G. (1994) Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS): current concepts. J. Child Neurol. 9, 4–13.

    Article  PubMed  CAS  Google Scholar 

  10. Joutel, B., Bousser, M.G., Biousse, V., et al. (1993) A gene for hemiplegic migraine maps to chromosome 19. Nat. Genet. 5, 40–45.

    Article  PubMed  CAS  Google Scholar 

  11. Hassan, A. and Markus, H. S. (2000) Genetics and ischemic stroke. Brain 123, 1784–1812.

    Article  PubMed  Google Scholar 

  12. Sourander, P. and Walinder, J. (1977) Hereditary multi-infarct dementia. Lancet 1, 1015.

    Article  PubMed  CAS  Google Scholar 

  13. Chabriat, H., Tournier-Lasserve, E., Vahedi, K., et al. (1995) Autosomal dominant migraine with MRI white-matter abnormalities mapping to the CADASIL locus. Neurology 45, 1086–1091.

    PubMed  CAS  Google Scholar 

  14. Dichgans, M., Mayer, M., Uttner, I., et al. (1998) The phenotypic spectrum of CADASIL: clinical findings in 102 cases. Ann. Neurol. 44, 731–739.

    Article  PubMed  CAS  Google Scholar 

  15. Hedera, P. and Friedland, R. P. (1997) Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: study of two American families with predominant dementia. J. Neurol. Sci. 146, 27–33.

    Article  PubMed  CAS  Google Scholar 

  16. Desmond, D. W., Moroney, J. T., Lynch, T., et al. (1998) CADASIL in a North American family: clinical, pathologic, and radiologic findings. Neurology 51, 844–849.

    PubMed  CAS  Google Scholar 

  17. Chabriat, H., Levy, C, Taillia, H., et al. (1998) Patterns of MRI lesions in CADASIL. Neurology 51, 452–457.

    PubMed  CAS  Google Scholar 

  18. Joutel, A., Vahedi, K., Corpechot, C, et al. (1997) Strong clustering and stereotyped nature of Notch3 mutations in CADASIL patients. Lancet 350, 1511–1515.

    Article  PubMed  CAS  Google Scholar 

  19. Joutel, A., Tournier-Lasserve, E. (1998) Notch signalling pathway and human diseases. Stem Cell Develop. Biol. 9, 619–625.

    Article  CAS  Google Scholar 

  20. Ruchoux, M. M. and Maurage, C. A. (1998) Endothelial changes in muscle and skin biopsies in patients with CADASIL. Neuropathol. Appl. Neurobiol. 24, 60–65.

    Article  PubMed  CAS  Google Scholar 

  21. Viitanen, M. and Kalimo, H. (2000) CADASIL: hereditary arteriopathy leading to multiple brain infarcts and dementia. Ann. NY Acad. Sci. 903, 273–284.

    Article  PubMed  CAS  Google Scholar 

  22. Couderc, R., Mahieux, F., Bailleul, S., Fenelon, G., Mary, R., and Fermanian, J. (1993) Prevalence of apolipoprotein E phenotypes in ischemic cerebrovascular disease. A case-control study. Stroke 24, 661–664.

    PubMed  CAS  Google Scholar 

  23. Nakata, Y., Katsuya, T., Rakugi, H., et al. (1997) Polymorphism of angiotensin converting enzyme, angiotensinogen, and apolipoprotein E genes in a Japanese population with cerebrovascular disease. Am. J. Hypertens. 10, 1391–1395.

    PubMed  CAS  Google Scholar 

  24. Kessler, C, Spitzer, C, Stauske, D., et al. (1997) The apolipoprotein E and β-fibrinogen G/A-455 gene polymorphisms are associated with ischemic stroke involving large-vessel disease. Arterioscl. Thromb. Vasc. Biol. 17, 2880–2884.

    PubMed  CAS  Google Scholar 

  25. DeStefano, V., Chiusolo, P., Paciaroni, K., et al. (1998) Prothrombin G20210A mutant genotype is a risk factor for cerebrovascular ischemic disease in young patients. Blood 91, 3562–3565.

    CAS  Google Scholar 

  26. Rubattu, S., Ridker, P., Stampfer, M.J., Volpe, M., Hennekens, C.H., and Lindpaintner, K. (1999) The gene encoding atrial natriuretic peptide and the risk of human stroke. Circulation 100, 1722–1726.

    PubMed  CAS  Google Scholar 

  27. Rubattu, S., Giliberti, R., Ganten, U., and Volpe, M. (1999) Differential brain atrial natriuretic peptide expression co-segregates with occurrence of early stroke in the stroke-prone phenotype of the spontaneously hypertensive rat. J. Hyperten. 17, 1849–1852.

    Article  CAS  Google Scholar 

  28. Rubattu, S., Lee-Kirsch, M.A., DePaolis, P., et al. (1999) Altered structure, regulation, and function of the gene encoding the atrial natriuretic peptide in the stroke-prone spontaneously hypertensive rat. Circ. Res. 85, 900–905.

    PubMed  CAS  Google Scholar 

  29. Yamori, Y., Horie, R., Handa, H., Sato, M., and Fukase, M. (1976) Pathogenetic similarity of strokes in stroke-prone spontaneously hypertensive rats and humans. Stroke 7, 46–53.

    PubMed  CAS  Google Scholar 

  30. Barone, F. C, Maguire, S., Strittmatter, R., et al. (2001) Longitudinal MRI measures brain injury and its resolution: reduced neurological recovery post-stroke and decreased brain tolerance following ischemic preconditioning in stroke-prone rats. J. Cereb. Blood Flow Metab. 21(suppl. 1), S230.

    Google Scholar 

  31. Purcell, J. E., Lenhard, S. C, White, R. F., Schaeffer, T., Barone, F. C, and Chandra, S. (2003) Strain-dependent response to cerebral ischemic preconditioning: Differences between spontaneously hypertensive and stroke-prone spontaneously hypertensive rats. Neurosci. Lett. 339, 151–155.

    Article  PubMed  CAS  Google Scholar 

  32. Rubattu, S., Volpe, M., Kreutz, R., Ganten, U., Ganten, D., Lindpaintner, K. (1996) Chromosomal mapping of quantitative trait loci contributing to stroke in a rat model of complex human disease. Nat. Genet. 13, 429–434.

    Article  PubMed  CAS  Google Scholar 

  33. Ikeda, K., Nara, Y., Matumoto, C, et al. (1996) The region responsible for stroke on chromosome 4 in the stroke-prone spontaneously hypertensive rat. Biochem. Biophys. Res. Comm. 229, 658–662.

    Article  PubMed  CAS  Google Scholar 

  34. Jeffs, B., Clark, J. S., Anderson, N. H., et al. (1997) Sensitivity to cerebral ischemic insult in a rat model of stroke is determined by a single genetic locus. Nat. Genet. 16, 364–367.

    Article  PubMed  CAS  Google Scholar 

  35. Gratton, J.A., Sauter, A., Rudin, M., et al. (1998) Susceptibility to cerebral infarction in the stroke-prone spontaneously hypertensive rat is inherited as a dominant trait. Stroke 29, 690–694.

    PubMed  CAS  Google Scholar 

  36. Brosnan, M. J., Clark, J. S., Jeffs, B., et al. (1999) Genes encoding atrial and brain natriuretic peptides as candidates for sensitivity to brain ischemia in stroke-prone hypertensive rats. Hypertension 33, 290–297.

    PubMed  CAS  Google Scholar 

  37. Ktorza, A., Bernard, C, Parent, V., et al. (1997) Are animal models of diabetes relevant to the study of the genetics of non-insulin-dependent diabetes in humans? Diabetes Metab. 23(suppl. 2), 38–46.

    PubMed  Google Scholar 

  38. Barone, F. C. and Feuerstein, G. Z. (1999) Inflammatory mediators and stroke: new opportunities for novel therapeutics. J. Cereb. Blood Flow Metab. 19, 819–834.

    Article  PubMed  CAS  Google Scholar 

  39. Koistinaho, J. and Hokfelt, T. (1997) Altered gene expression in brain ischemia. Neuroreport 8, i–viii.

    PubMed  CAS  Google Scholar 

  40. Sharp, F. R., Lu, A., Tang, Y., and Millhorn, D. E. (2000) Multiple molecular penumbras after focal cerebral ischemia. J. Cereb. Blood Flow Metab. 20, 1011–1032.

    Article  PubMed  CAS  Google Scholar 

  41. Iadecola, C. and Ross, M. E. (1997) Molecular pathology of cerebral ischemia: delayed gene expression and strategies for neuroprotection. Ann. New York Acad. Sci. 835, 203–217.

    Article  CAS  Google Scholar 

  42. Gibson, U. E., Heid, C. A., and Williams, P. M. (1996) A novel method for real time quantitative RT-PCR. Genome Res. 6, 995–1001.

    Article  PubMed  CAS  Google Scholar 

  43. Harrison, D. C, Medhurst, A. D., Bond, B. C, Campbell, C. A., Davis, R. P., Philpott, K. L. (2000) The use of quantitative RT-PCR to measure mRNA expression in a rat model of focal ischemia—caspase-3 as a case study. Mol. Brain Res. 75, 143–149.

    Article  PubMed  CAS  Google Scholar 

  44. Harrison, D. C, Davis, R. P., Bond, B. C, et al. (2001) Caspase mRNA expression in a rat model of focal cerebral ischemia. Mol. Brain Res. 89, 133–146.

    Article  PubMed  CAS  Google Scholar 

  45. Bates, S., Read, S. J., Harrison, D. C, et al. (2001) Characterisation of gene expression changes following permanent MCAO in the rat using subtractive hybridisation. Brain Res. Mol. Brain Res. 93, 70–80.

    Article  PubMed  CAS  Google Scholar 

  46. Medhurst, A. D., Harrison, D. C, Read, S. J., Campbell, C. A., Robbins, M. J., and Pangalos, M. N. (2000) The use of TaqMan RT-PCR assays for semiquantitative analysis of gene expression in CNS tissues and disease models. J. Neurosci. Meth. 98, 9–20.

    Article  CAS  Google Scholar 

  47. Read, S. J., Parsons, A. A., Harrison, D. C., et al. (2001) Stroke genomics: approaches to identify, validate, and understand ischemic stroke gene expression. J. Cere. Blood Flow Metab. 21, 755–778.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Read, S.J., Barone, F.C. (2005). Introduction to Stroke Genomics. In: Read, S.J., Virley, D. (eds) Stroke Genomics. Methods in Molecular Medicine, vol 104. Humana Press. https://doi.org/10.1385/1-59259-836-6:003

Download citation

  • DOI: https://doi.org/10.1385/1-59259-836-6:003

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-333-6

  • Online ISBN: 978-1-59259-836-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics