Advertisement

Glutathione Transport in the Kidneys

Experimental Models, Mechanisms, and Methods
  • Lawrence H. Lash
Protocol
  • 839 Downloads
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

Although investigators have often focused on the role of glutathione (GSH) in drug metabolism and protection from reactive oxygen species and toxic electrophiles, membrane transport processes also play a critical role in the overall homeostasis of GSH in the body. Although the liver is the primary source of extracellular GSH, the kidneys are relatively unique in possessing plasma membrane transport systems for both uptake and efflux of GSH and are the major sites for clearance of circulating GSH from the plasma. This chapter reviews the various aspects of how GSH is transported across the plasma and mitochondrial inner membranes in renal cells, with a focus on the appropriate choice of experimental model and considerations important in accurately quantifying transport. Model systems for measuring plasma membrane transport of GSH that are discussed include isolated cells and tubules and membrane vesicles. Model systems for measuring mitochondrial transport of GSH include isolated cells coupled with digitonin fractionation, isolated mitochondria and mitoplasts, purified and reconstituted carrier proteins, and bacterially expressed, purified and reconstituted recombinant carrier proteins. GSH is truly a “molecule on the move” and accomplishes this by highly regulated, carrier-mediated processes that can be exploited to modulate and characterize cellular and mitochondrial redox homeostasis.

Key Words

Apoptosis basolateral plasma membrane brush-border plasma membrane tert-butyl-hydroperoxide dibutylphthalate method dicarboxylate carrier digitonin fractionation distal tubular cells γ-glutamyltransferase glutathione glutathione disulfide glutathione degradation glutathione oxidation interorgan metabolism kidney marker enzymes membrane vesicles mitochondria mitoplasts multidrug resistance proteins NRK-52E cells organic anion transporters 2-oxoglutarate carrier proximal tubular cells sodium-dicarboxylate 2 cotransporter 

References

  1. 1.
    Lash LH, Jones DP, Anders MW. Glutathione homeostasis and glutathione S-conjugate toxicity in the kidney. Rev Biochem Toxicol 1988;9:29–67.Google Scholar
  2. 2.
    Ballatori N, Dutczak WJ. Identification and characterization of high and low affinity transport systems for reduced glutathione in liver cell canalicular membranes. J Biol Chem 1994;269:19731–19737.PubMedGoogle Scholar
  3. 3.
    Kaplowitz N, Aw TY, Ookhtens M. The regulation of hepatic glutathione. Annu Rev Pharmacol Toxicol 1985;25:715–744.PubMedCrossRefGoogle Scholar
  4. 4.
    Lash LH. Glutathione and other antioxidant defense mechanisms. In: Goldstein RS, ed. Comprehensive Series in Toxicology, Vol. 7: Kidney Toxicology, Oxford: Elsevier; 1997:403–428.Google Scholar
  5. 5.
    Hinchman CA, Ballatori N. Glutathione-degrading capacities of liver and kidney in different species. Biochem Pharmacol 1990;40:1131–1135.PubMedCrossRefGoogle Scholar
  6. 6.
    Hagen TM, Aw TY, Jones DP. Glutathione uptake and protection against oxidative injury in isolated kidney cells. Kidney Int 1988;34:74–81.PubMedCrossRefGoogle Scholar
  7. 7.
    Parks LD, Zalups RK, Barfuss DW. Heterogeneity of glutathione synthesis and secretion in the proximal tubule of the rabbit. Am J Physiol 1998;274:F924–F931.PubMedGoogle Scholar
  8. 8.
    Fonteles MC, Pillio DJ, Jeske AH, Leibach FH. Extraction of glutathione by the isolated perfused rabbit kidney. J Surg Res 1976;21:169–174.PubMedCrossRefGoogle Scholar
  9. 9.
    Griffith OW, Meister A. Glutathione: interorgan translocation, turnover, and metabolism. Proc Natl Acad Sci USA 1979;76:5606–5610.PubMedCrossRefGoogle Scholar
  10. 10.
    Häberle D, Wahlländer A, Sies H. Assessment of the kidney function in maintenance of plasma glutathione concentration and redox state in anesthetized rats. FEBS Lett 1979;108:335–340.PubMedCrossRefGoogle Scholar
  11. 11.
    Anderson ME, Bridges RJ, Meister A. Direct evidence for inter-organ transport of glutathione and that the non-filtration mechanism for glutathione utilization involves γ-glutamyl transpeptidase. Biochem Biophys Res Commun 1980;96:848–853.PubMedCrossRefGoogle Scholar
  12. 12.
    Ormstad K, Låstbom T, Orrenius S. Evidence for different localization of glutathione oxidase and γ-glutamyltransferase activities during extracellular glutathione metabolism in isolated perfused kidney. Biochim Biophys Acta 1982;700:148–153.PubMedCrossRefGoogle Scholar
  13. 13.
    Rankin BB, Curthoys NP. Evidence for renal paratubular transport of glutathione. FEBS Lett 1982;147:193–196.PubMedCrossRefGoogle Scholar
  14. 14.
    Rankin BB, Wells W, Curthoys NP Rat renal peritubular transport and metabolism of plasma [35S]glutathione. Am J Physiol 1985;249:F198–F204.PubMedGoogle Scholar
  15. 15.
    Abbott WA, Bridges RJ, Meister A. Extracellular metabolism of glutathione accounts for its disappearance from the basolateral circulation of the kidneys. J Biol Chem 1984;259:15393–15400.PubMedGoogle Scholar
  16. 16.
    Inoue M, Shinozuka S, Morino Y. Mechanism of peritubular extraction of plasma glutathione: the catalytic activity of contralumenal γ-glutamyltransferase is prerequisite to the apparent peritubular extraction of plasma glutathione. Eur J Biochem 1986;157:605–609.PubMedCrossRefGoogle Scholar
  17. 17.
    Lash LH, Jones DP. Transport of glutathione by renal basal-lateral membrane vesicles. Biochem Biophys Res Commun 1983;112:55–60.PubMedCrossRefGoogle Scholar
  18. 18.
    Lash LH, Jones DP. Renal glutathione transport: characteristics of the sodium-dependent system in the basal-lateral membrane. J Biol Chem 1984;259:14508–14514.PubMedGoogle Scholar
  19. 19.
    Lash LH, Jones DP. Uptake of the glutathione conjugate S-(1,2-dichlorovinyl) glutathione by renal basal-lateral membrane vesicles and isolated kidney cells. Mol Pharmacol 1985;28:278–282.PubMedGoogle Scholar
  20. 20.
    Lash LH, Putt DA. Renal cellular transport of exogenous glutathione: heterogeneity at physiological and pharmacological concentrations. Biochem Pharmacol 1999;58:897–907.PubMedCrossRefGoogle Scholar
  21. 21.
    Inou M, Morino Y. Direct evidence for the role of the membrane potential in glutathione transport by renal brush-border membranes. J Biol Chem 1985;260:326–331.Google Scholar
  22. 22.
    Griffith OW, Meister A. Translocation of intracellular glutathione to membrane-bound γ-glutamyl transpeptidase as a discrete step in the γ-glutamyl cycle: glutathionuria after inhibition of transpeptidase. Proc Natl Acad Sci USA 1979;76:268–272.PubMedCrossRefGoogle Scholar
  23. 23.
    Scott RD, Curthoys NP. Renal clearance of glutathione measured in rats pretreated with inhibitors of glutathione metabolism. Am J Physiol 1987;252:F877–F882.PubMedGoogle Scholar
  24. 24.
    Mittur A, Wolkoff AW, Kaplowitz N. The thiol sensitivity of glutathione transport in sidedness-sorted basolateral liver plasma membrane and in Oatp1-expressing HeLa cell membrane. Mol Pharmacol 2002;61:425–435.PubMedCrossRefGoogle Scholar
  25. 25.
    Li L, Lee TK, Meier PJ, Ballatori N. Identification of glutathione as a driving force and leukotriene C4 as a substrate for oatp1, the hepatic sinusoidal organic solute transporter. J Biol Chem 1998;273:16184–16191.PubMedCrossRefGoogle Scholar
  26. 26.
    Takeuchi A, Masuda S, Saito H, Hashimoto Y, Inui K. Trans-stimulation effects of folic acid derivatives on methotrexate transport by rat renal organic anion transporter, OAT-K1. J Pharmacol Exp Ther 2000;293:1034–1039.PubMedGoogle Scholar
  27. 27.
    Keppler D, Leier I, Jedlitschky G. Transport of glutathione conjugates and glucuronides by the multidrug resistance proteins MRP1 and MRP2. Biol Chem 1997;378:787–791.PubMedGoogle Scholar
  28. 28.
    Gerk PM, Vore M. Regulation of expression of the multidrug resistance-associated protein 2 (MRP2) and its role in drug disposition. J Pharmacol Exp Ther 2002;302:407–415.PubMedCrossRefGoogle Scholar
  29. 29.
    Terlouw S, Masereeuw R, van den Broek PHH, Notenboom S, Russel FGM. Role of multidrug resistance protein 2 (MRP2) in glutathione-bimane efflux from Caco-2 and rat renal proximal tubule cells. Br J Pharmacol 2001;134:931–938.PubMedCrossRefGoogle Scholar
  30. 30.
    Evers R, de Haas M, Sparidans R, et al. Vinblastine and sulfinpyrazone export by the multidrug resistance protein MRP2 is associated with glutathione export. Br J Cancer 2000;83:375–383.PubMedCrossRefGoogle Scholar
  31. 31.
    Paulusma CC, van Geer MA, Evers R, et al. Canalicular multispecific organic anion transporter/multidrug resistance protein 2 mediates low-affinity transport of reduced glutathione. Biochem J 1999;338:393–401.PubMedCrossRefGoogle Scholar
  32. 32.
    Rebbeor JF, Connolly GC, Ballatori N. Inhibition of Mrp2-and Ycf1p-mediated transport by reducing agents: evidence for GSH transport on rat Mrp2. Biochim Biophys Acta 2002;1559:171–178.Google Scholar
  33. 33.
    Moldéus P, Ormstad K, Reed DJ. Turnover of cellular glutathione in isolated rat kidney cells: role of cystine and methionine. Eur J Biochem 1981;116:13–16.PubMedCrossRefGoogle Scholar
  34. 34.
    Meredith MJ, Reed DJ. Status of the mitochondrial pool of glutathione in the isolated hepatocyte. J Biol Chem 1982;257:3747–3753.PubMedGoogle Scholar
  35. 35.
    Lash LH, Visarius TM, Sall JW, Qian W, Tokarz JJ. Cellular and subcellular heterogeneity of glutathione metabolism and transport in rat kidney cells. Toxicology 1998;130:1–15.PubMedCrossRefGoogle Scholar
  36. 36.
    Schnellmann RG, Gilchrist SM, Mandel LJ. Intracellular distribution and depletion of glutathione in rabbit renal proximal tubules. Kidney Int 1988;34:229–233.PubMedCrossRefGoogle Scholar
  37. 37.
    Griffith OW, Meister A. Origin and turnover of mitochondrial glutathione. Proc Natl Acad Sci USA 1985;82:4668–4672.PubMedCrossRefGoogle Scholar
  38. 38.
    McKernan TB, Woods EB, Lash LH. Uptake of glutathione by renal cortical mitochondria. Arch Biochem Biophys 1991;288:653–663.PubMedCrossRefGoogle Scholar
  39. 39.
    Yagi T, Hatefi Y. Thiols in oxidative phosphorylation: inhibition and energy-potentiated uncoupling by monothiol and dithiol modifiers. Biochemistry 1984;23:2449–2455.PubMedCrossRefGoogle Scholar
  40. 40.
    Beatrice MC, Stiers DL, Pfeiffer DR. The role of glutathione in the retention of Ca2+ by liver mitochondria. J Biol Chem 1984;259:1279–1287.PubMedGoogle Scholar
  41. 41.
    Lê-Quôc K, Lê-Quôc D. Crucial role of sulfhydryl groups in the mitochondrial inner membrane structure. J Biol Chem 1985;260:7422–7428.PubMedGoogle Scholar
  42. 42.
    Lê-Quôc D, Lê-Quôc K. Relationships between the NAD(P) redox state, fatty acid oxidation, and inner membrane permeability in rat liver mitochondria. Arch Biochem Biophys 1989;273:466–478.PubMedCrossRefGoogle Scholar
  43. 43.
    Martensson J, Meister A. Mitochondrial damage in muscle occurs after marked depletion of glutathione and is prevented by giving glutathione monoester. Proc Natl Acad Sci USA 1989;86:471–475.PubMedCrossRefGoogle Scholar
  44. 44.
    Shan X, Jones DP, Hashmi M, Anders MW. Selective depletion of mitochondrial glutathione concentrations by (R,S)-3-hydroxy-4-pentenoate potentiates oxidative cell death. Chem Res Toxicol 1993;6:75–81.PubMedCrossRefGoogle Scholar
  45. 45.
    Hashmi M, Gräf S, Braun M, Anders MW. Enantioselective depletion of mitochondrial glutathione concentrations by (S)-and (R)-3-hydroxy-4-pentenoate. Chem Res Toxicol 1996;9:361–364.PubMedCrossRefGoogle Scholar
  46. 46.
    Kurosawa K, Hayashi N, Sato N, Kamada T, Tagawa K Transport of glutathione across the mitochondrial membranes. Biochem Biophys Res Commun 1990;167:367–372.PubMedCrossRefGoogle Scholar
  47. 47.
    Martensson J, Lai JCK, Meister A. High-affinity transport of glutathione is part of a multicomponent system essential for mitochondrial function. Proc Natl Acad Sci USA 1990;87:7185–7189.PubMedCrossRefGoogle Scholar
  48. 48.
    Schnellmann RG. Renal mitochondrial glutathione transport. Life Sci 1991;49:393–398.PubMedCrossRefGoogle Scholar
  49. 49.
    Chen Z, Lash LH. Evidence for mitochondrial uptake of glutathione by dicarboxylate and 2-oxoglutarate carriers. J Pharmacol Exp Ther 1998;285:608–618.PubMedGoogle Scholar
  50. 50.
    Chen Z, Putt DA, Lash LH. Enrichment and functional reconstitution of glutathione transport activity from rabbit kidney mitochondria: further evidence for the role of the dicarboxylate and 2-oxoglutarate carriers in mitochondrial glutathione transport. Arch Biochem Biophys 2000;373:193–202.PubMedCrossRefGoogle Scholar
  51. 51.
    Lash LH, Putt DA, Hueni SE, et al. Cellular energetics and glutathione status in NRK-52E cells: toxicological implications. Biochem Pharmacol 2002;64:1533–1546.PubMedCrossRefGoogle Scholar
  52. 52.
    Lash LH, Putt DA, Matherly LH. Protection of NRK-52E cells, a rat renal proximal tubular cell line, from chemical induced apoptosis by overexpression of a mitochondrial glutathione transporter. J Pharmacol Exp Ther 2002;303:476–486.PubMedCrossRefGoogle Scholar
  53. 53.
    Xu F, Lash LH, Putt DA, Sun B, Matherly LH. Expression and stable transfection in NRK-52E cells of the mitochondrial 2-oxoglutarate carrier (OGC), a glutathione transporter. Toxicol Sci 2003;72(1-S):351.Google Scholar
  54. 54.
    Lash LH, Xu F, Putt DA, Sun B, Matherly LH. Expression and stable transfection in NRK-52E cells of the mitochondrial 2-oxoglutarate carrier (OGC), a glutathione transporter. FASEB J 2003;17:A1046.Google Scholar
  55. 55.
    Lash LH, Putt DA, Xu F, et al. Modulation of mitochondrial glutathione (GSH) transport in NRK-52E cells alters susceptibility to oxidative injury. J Am Soc Nephrol 2003;14:355A.Google Scholar
  56. 56.
    Lash LH, Tokarz JJ. Isolation of two distinct populations of cells from rat kidney cortex and their use in the study of chemical-induced toxicity. Anal Biochem 1989;182:271–279.PubMedCrossRefGoogle Scholar
  57. 57.
    Lash LH. In vitro methods of assessing renal damage. Toxicol Pathol 1998;26:33–42.PubMedCrossRefGoogle Scholar
  58. 58.
    Lash LH. Use of freshly isolated and primary cultures of proximal tubular and distal tubular cells from rat kidneys. In: Zalups RK, Lash LH, eds. Methods in Renal Toxicology. Boca Raton, FL: CRC Press;1996:189–215.Google Scholar
  59. 59.
    Jayaram HN, Cooney DA, Ryan JA, Neil G, Dion RL, Bono VH. l-[αS,5S]-α-Amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (NSC-163501): a new amino acid antibiotic with the properties of an antagonist of l-glutamine. Cancer Chemother Rep 1975;59:481–491.PubMedGoogle Scholar
  60. 60.
    Reed DJ, Ellis WW, Meck RA. The inhibition of γ-glutamyl transpeptidase and glutathione metabolism of isolated rat kidney cells by l-(αS,5S)-α-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (AT-125; NSC-163501). Biochem Biophys Res Commun 1980;94:1273–1277.PubMedCrossRefGoogle Scholar
  61. 61.
    Schasteen CS, Curthoys NP, Reed DJ. The binding mechanism of glutathione and the anti-tumor drug l-(αS,5S)-α-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (AT-125; NSC-163501) to γ-glutamyltransferase. Biochem Biophys Res Commun 1981;112:564–570.CrossRefGoogle Scholar
  62. 62.
    Lash LH. Intracellular distribution of thiols and disulfides: assay of mitochondrial glutathione transport. Methods Enzymol 1995;252:14–26.PubMedCrossRefGoogle Scholar
  63. 63.
    Lash LH, Sall JM. Mitochondrial isolation from liver and kidney: strategy, techniques, and criteria for purity. In: Lash LH, Jones DP, eds. Methods in Toxicology, Vol. 2; Mitochondrial Dysfunction, San Diego: Academic Press; 1993;8–28.Google Scholar
  64. 64.
    Greenawalt JW. The isolation of outer and inner mitochondrial membranes. Methods Enzymol 1974;31:310–323.PubMedCrossRefGoogle Scholar
  65. 65.
    Fariss MW, Reed DJ. High-performance liquid chromatography of thiols and disulfides: dinitrophenyl derivatives. Methods Enzymol 1987;143:101–109.PubMedCrossRefGoogle Scholar
  66. 66.
    Lash LH, Jones DP. Localization of the membrane-associated thiol oxidase of rat kidney to the basal-lateral plasma membrane. Biochem J 1982;203:371–376.PubMedGoogle Scholar
  67. 67.
    Lash LH, Jones DP. Purification and properties of thiol oxidase from porcine kidney. Arch Biochem Biophys 1986;247:120–130.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Lawrence H. Lash
    • 1
  1. 1.Department of PharmacologyWayne State UniversityDetroit

Personalised recommendations