Modulation of Drug Metabolism and Antiviral Therapies

  • Bernhard H. Lauterburg
Part of the Methods in Pharmacology and Toxicology book series (MIPT)


Antiviral therapies are an important, emerging area of pharmaceutical research, particularly with the advent of the AIDS epidemic and the continued existence of other virally mediated diseases. This chapter focuses on pharmacological approaches to treat these diseases and summarizes the current classes of therapeutic agents. The concept of pharmacokinetic “boosting” in enhancing the efficacy of treatment is discussed, as is the interaction potential of clinically used antiviral agents and the role of intestinal metabolism and drug transporters, particularly the multidrug resistance proteins, in the handling of these drugs. Major classes of antiviral agents that are discussed include nucleoside and nucleotide analogs, other reverse-transcriptase inhibitors, protease inhibitors, fusion inhibitors, and interferons.

Key Words

Analogs: nucleoside analogs: nucleotide antiviral agents cytochrome P450 CYP2D6 CYP3A4 HIV-protease inhibitors interferons intestinal metabolism transport multidrug resistance proteins P-glycoprotein reverse-transcriptase: nonnucleoside inhibitors 


  1. 1.
    Tsunoda SM, Velez RL, von Moltke LL, Greenblatt DJ. Differentiation of intestinal and hepatic cytochrome P450 3A activity with use of midazolam as an in vivo probe: effect of ketoconazole. Clin Pharmacol Ther 1999;66:461–471.PubMedCrossRefGoogle Scholar
  2. 2.
    Gorski JC, Jones DR, Haehner-Daniels BD, Hamman MA, O’Mara EM, Jr, Hall SD. The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin. Clin Pharmacol Ther 1998;64:133–143.PubMedCrossRefGoogle Scholar
  3. 3.
    Floren LC, Bekersky I, Benet LZ, et al. Tacrolimus oral bioavailability doubles with coadministration of ketoconazole. Clin Pharmacol Ther 1997;62:41–49.PubMedCrossRefGoogle Scholar
  4. 4.
    Neuvonen PJ, Jalava KM. Itraconazole drastically increases plasma concentrations of lovastatin and lovastatin acid. Clin Pharmacol Ther 1996;60:54–61.PubMedCrossRefGoogle Scholar
  5. 5.
    Kane GC, Lipsky JJ. Drug-grapefruit juice interactions. Mayo Clin Proc 2000;75; 933–942.PubMedCrossRefGoogle Scholar
  6. 6.
    Plosker G, Scott L, Saquinavir. A review of its use in boosted regimens for treating HIV infection. Drugs 2003;63:1299–1324.PubMedCrossRefGoogle Scholar
  7. 7.
    Shiraki N, Hamada A, Yasuda K, Fujii J, Arimori K, Nakano M. Inhibitory effect of human immunodeficiency virus protease inhibitors on multidrug resistance transporter P-glycoproteins. Biol Pharm Bull 2000;23:1528–1531.PubMedGoogle Scholar
  8. 8.
    Schuetz JD, Connelly MC, Sun D, et al. MRP4: a previously unidentified factor in resistance to nucleoside-based antiviral drugs. Nat Med 1999;5:1048–1051.PubMedCrossRefGoogle Scholar
  9. 9.
    Takeda M, Khamdang S, Narikawa S, et al. Human organic anion transporters and human organic cation transporters mediate renal antiviral transport. J Pharmacol Exp Ther 2002;300:918–924.PubMedCrossRefGoogle Scholar
  10. 10.
    Gibbs JE, Thomas SA. The distribution of the anti-HIV drug, 2′3′-dideoxycytidine (ddC), across the blood-brain and blood-cerebrospinal fluid barriers and the influence of organic anion transport inhibitors. J Neurochem 2002;80:392–404.PubMedCrossRefGoogle Scholar
  11. 11.
    De Bony F, Tod M, Bidault R, On NT, Posner J, Rolan P. Multiple interactions of cimetidine and probenecid with valaciclovir and its metabolite acyclovir. Antimicrob Agents Chemother 2002;46:458–463.PubMedCrossRefGoogle Scholar
  12. 12.
    Laskin OL, de Miranda P, King DH, et al. Effects of probenecid on the pharma-cokinetics and elimination of acyclovir in humans. Antimicrob Agents Chemother 1982;21:804–807.PubMedGoogle Scholar
  13. 13.
    Sabo JP, Lamson MJ, Leitz G, Yong CL, MacGregor TR. Pharmacokinetics of nevirapine and lamivudine in patients with HIV-1 infection. AAPS Pharm Sci 2000;2:E1.CrossRefGoogle Scholar
  14. 14.
    Sim SM, Hoggard PG, Sales SD, Phiboonbanakit D, Hart CA, Back DJ. Effect of ribavirin on zidovudine efficacy and toxicity in vitro: a concentration-dependent interaction. AIDS Res Hum Retrov 1998;14:1661–1667.CrossRefGoogle Scholar
  15. 15.
    Hoggard PG, Kewn S, Barry MG, Khoo SH, Back DJ. Effects of drugs on 2′,3′-dideoxy-2′,3′-didehydrothymidine phosphorylation in vitro. Antimicrob Agents Chemother 1997;41:1231–1236.PubMedGoogle Scholar
  16. 16.
    Kewn S, Hoggard PG, Henry-Mowatt JS, et al. Intracellular activation of 2′,3′-dideoxyinosine and drug interactions in vitro. AIDS Res Hum Retrov 1999;15: 793–802.CrossRefGoogle Scholar
  17. 17.
    Kewn S, Veal GJ, Hoggard PG, Barry MG, Back DJ. Lamivudine (3TC) phosphorylation and drug interactions in vitro. Biochem Pharmacol 1997;54: 589–595.PubMedCrossRefGoogle Scholar
  18. 18.
    Palmer S, Shafer RW, Merigan TC. Hydroxyurea enhances the activities of didanosine, 9-[2-(phosphonylmethoxy)ethyl]adenine, and 9-[2-(phosphonylmethoxy)propyl] adenine against drug-susceptible and drug-resistant human immunodeficiency virus isolates. Antimicrob Agents Chemother 1999;43:2046–2050.PubMedGoogle Scholar
  19. 19.
    McKenzie R, Fried MW, Sallie R, et al. Hepatic failure and lactic acidosis due to fialuridine (FIAU), an investigational nucleoside analog for chronic hepatitis B. N Engl J Med 1995;333:1099–1105.PubMedCrossRefGoogle Scholar
  20. 20.
    Klecker RW, Katki AG, Collins JM. Toxicity, metabolism, DNA incorporation with lack of repair, and lactate production for 1-(2′-fluoro-2′-deoxy-beta-d-arabinofuranosyl)-5-iodouracil in U-937 and MOLT-4 cells. Mol Pharmacol 1994; 46:1204–1209.PubMedGoogle Scholar
  21. 21.
    Lewis W, Levine ES, Griniuviene B, et al. Fialuridine and its metabolites inhibit DNA polymerase gamma at sites of multiple adjacent analog incorporation, decrease mtDNA abundance, and cause mitochondrial structural defects in cultured hepatoblasts. Proc Natl Acad Sci USA 1996;93:3592–3597.PubMedCrossRefGoogle Scholar
  22. 22.
    Ogedegbe AE, Thomas DL, Diehl AM. Hyperlactataemia syndromes associated with HIV therapy. Lancet Infect Dis 2003;3:329–337.PubMedCrossRefGoogle Scholar
  23. 23.
    Yamaguchi T, Katoh I, Kurata S. Azidothymidine causes functional and structural destruction of mitochondria, glutathione deficiency and HIV-1 promoter sensitization. Eur J Biochem 2002;269:2782–2788.PubMedCrossRefGoogle Scholar
  24. 24.
    Cundy KC. Clinical pharmacokinetics of the antiviral nucleotide analogs cidofovir and adefovir. Clin Pharmacokinet 1999;36:127–143.PubMedCrossRefGoogle Scholar
  25. 25.
    von Moltke LL, Greenblatt DJ, Granda BW, et al. Inhibition of human cytochrome P450 isoforms by nonnucleoside reverse transcriptase inhibitors. J Clin Pharmacol 2001;41:85–91.CrossRefGoogle Scholar
  26. 26.
    Pinzani V, Faucherre V, Peyriere H, Blayac JP. Methadone withdrawal symptoms with nevirapine and efavirenz. Ann Pharmacother 2000;34:405–407.PubMedCrossRefGoogle Scholar
  27. 27.
    Clarke SM, Mulcahy FM, Tjia J, et al. Pharmacokinetic interactions of nevirapine and methadone and guidelines for use of nevirapine to treat injection drug users. Clin Infect Dis 2001;33:1595–1597.PubMedCrossRefGoogle Scholar
  28. 28.
    Altice FL, Friedland GH, Cooney EL. Nevirapine induced opiate withdrawal among injection drug users with HIV infection receiving methadone. AIDS 1999;13:957–962.PubMedCrossRefGoogle Scholar
  29. 29.
    Murphy RL, Sommadossi JP, Lamson M, Hall DB, Myers M, Dusek A. Antiviral effect and pharmacokinetic interaction between nevirapine and indinavir in persons infected with human immunodeficiency virus type 1. J Infect Dis 1999;179: 1116–1123.PubMedCrossRefGoogle Scholar
  30. 30.
    Falloon J, Piscitelli S, Vogel S, et al. Combination therapy with amprenavir, abacavir, and efavirenz in human immunodeficiency virus (HIV)-infected patients failing a protease-inhibitor regimen: pharmacokinetic drug interactions and antiviral activity. Clin Infect Dis 2000;30:313–318.PubMedCrossRefGoogle Scholar
  31. 31.
    Piketty C, Race E, Castiel P, et al. Efficacy of a five-drug combination including ritonavir, saquinavir and efavirenz in patients who failed on a conventional tripledrug regimen: phenotypic resistance to protease inhibitors predicts outcome of therapy. AIDS 1999;13:F71–F77.PubMedCrossRefGoogle Scholar
  32. 32.
    Malaty LI, Kuper JJ. Drug interactions of HIV protease inhibitors. Drug Safety 1999;20:147–169.PubMedCrossRefGoogle Scholar
  33. 33.
    Tran JQ, Petersen C, Garrett M, Hee B, Kerr BM. Pharmacokinetic interaction between amprenavir and delavirdine: evidence of induced clearance by amprenavir. Clin Pharmacol Ther 2002;72:615–626.PubMedCrossRefGoogle Scholar
  34. 34.
    Ferry JJ, Herman BD, Carel BJ, Carlson GF, Batts DH. Pharmacokinetic drug–drug interaction study of delavirdine and indinavir in healthy volunteers. J Acquir Immune Defic Syndr Hum Retrovirol 1998;18:252–259.PubMedGoogle Scholar
  35. 35.
    Kumar GN, Rodrigues AD, Buko AM, Denissen JF. Cytochrome P450-mediated metabolism of the HIV-1 protease inhibitor ritonavir (ABT-538) in human liver microsomes. J Pharmacol Exp Ther 1996;277:423–431.PubMedGoogle Scholar
  36. 36.
    von Moltke LL, Greenblatt DJ, Grassi JM, et al. Protease inhibitors as inhibitors of human cytochromes P450: high risk associated with ritonavir. J Clin Pharmacol 1998;38:106–111.Google Scholar
  37. 37.
    Kempf DJ, Marsh KC, Kumar G, et al. Pharmacokinetic enhancement of inhibitors of the human immunodeficiency virus protease by coadministration with ritonavir. Antimicrob Agents Chemother 1997;41:654–660.PubMedGoogle Scholar
  38. 38.
    Saah AJ, Winchell GA, Nessly ML, Seniuk MA, Rhodes RR, Deutsch PJ. Pharmacokinetic profile and tolerability of indinavir-ritonavir combinations in healthy volunteers. Antimicrob Agents Chemother 2001;45:2710–2715.PubMedCrossRefGoogle Scholar
  39. 39.
    Koudriakova T, Iatsimirskaia E, Utkin I, et al. Metabolism of the human immunodeficiency virus protease inhibitors indinavir and ritonavir by human intestinal microsomes and expressed cytochrome P4503A4/3A5: mechanism-based inactivation of cytochrome P4503A by ritonavir. Drug Metab Dispos 1998;26:552–561.PubMedGoogle Scholar
  40. 40.
    Hsu A, Granneman GR, Witt G, et al. Multiple-dose pharmacokinetics of ritonavir in human immunodeficiency virus-infected subjects. Antimicrob Agents Chemother 1997;41:898–905.PubMedGoogle Scholar
  41. 41.
    Aarnoutse RE, Grintjes KJ, Telgt DS, et al. The influence of efavirenz on the pharmacokinetics of a twice-daily combination of indinavir and low-dose ritonavir in healthy volunteers. Clin Pharmacol Ther 2002;71:57–67.PubMedCrossRefGoogle Scholar
  42. 42.
    Gerber JG, Rosenkranz S, Segal Y, et al. ACTG 401 Study Team. Effect of ritonavir/saquinavir on stereoselective pharmacokinetics of methadone: results of AIDS Clinical Trials Group (ACTG) 401. J AIDS 2001;27:153–160.Google Scholar
  43. 43.
    Ouellet D, Hsu A, Qian J, et al. Effect of ritonavir on the pharmacokinetics of ethinyl oestradiol in healthy female volunteers. Br J Clin Pharmacol 1998;46: 111–116.PubMedCrossRefGoogle Scholar
  44. 44.
    Hsu A, Granneman GR, Cao G, et al. Pharmacokinetic interactions between two human immunodeficiency virus protease inhibitors, ritonavir and saquinavir. Clin Pharmacol Ther 1998;63:453–464.PubMedCrossRefGoogle Scholar
  45. 45.
    Chiba M, Hensleigh M, Nishime JA, Balani SK, Lin JH. Role of cytochrome P450 3A4 in human metabolism of MK-639, a potent human immunodeficiency virus protease inhibitor. Drug Metab Dispos 1996;24:307–314.PubMedGoogle Scholar
  46. 46.
    Lillibridge JH, Liang BH, Kerr BM, et al. Characterization of the selectivity and mechanism of human cytochrome P450 inhibition by the human immunodeficiency virus-protease inhibitor nelfinavir mesylate. Drug Metab Dispos 1998;26:609–616.PubMedGoogle Scholar
  47. 47.
    Kurowski M, Kaeser B, Sawyer A, Popescu M, Mrozikiewicz A. Low-dose ritonavir moderately enhances nelfinavir exposure. Clin Pharmacol Ther 2002;72: 123–132.PubMedCrossRefGoogle Scholar
  48. 48.
    Weemhoff JL, von Moltke LL, Richert C, Hesse LM, Harmatz JS, Greenblatt DJ. Apparent mechanism-based inhibition of human CYP3A in-vitro by lopinavir. J Pharm Pharmacol 2003;55:381–386.PubMedCrossRefGoogle Scholar
  49. 49.
    Lee CG, Gottesman MM, Cardarelli CO, et al. HIV-1 protease inhibitors are substrates for the MDR1 multidrug transporter. Biochemistry 1998;37:3594–3601.PubMedCrossRefGoogle Scholar
  50. 50.
    Fromm MF. P-glycoprotein: a defense mechanism limiting oral bioavailability and CNS accumulation of drugs. Int J Clin Pharmacol Ther 2000;38:69–74.PubMedGoogle Scholar
  51. 51.
    Lin JH, Yamazaki M. Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin Pharmacokinet 2003;42:59–98.PubMedCrossRefGoogle Scholar
  52. 52.
    Kim RB, Wandel C, Leake B, et al. Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharm Res 1999;16: 408–414.PubMedCrossRefGoogle Scholar
  53. 53.
    Synold TW, Dussault I, Forman BM. The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nat Med 2001;7:584–590.PubMedCrossRefGoogle Scholar
  54. 54.
    Dussault I, Lin M, Hollister K, Wang EH, Synold TW, Forman BM. Peptide mimetic HIV protease inhibitors are ligands for the orphan receptor SXR. J Biol Chem 2001;276:33309–33312.PubMedCrossRefGoogle Scholar
  55. 55.
    Alsenz J, Steffen H, Alex R. Active apical secretory efflux of the HIV protease inhibitors saquinavir and ritonavir in Caco-2 cell monolayers. Pharm Res 1998;15: 423–428.PubMedCrossRefGoogle Scholar
  56. 56.
    Gutmann H, Fricker G, Drewe J, Toeroek M, Miller DS. Interactions of HIV protease inhibitors with ATP-dependent drug export proteins. Mol Pharmacol 1999;56: 383–389.PubMedGoogle Scholar
  57. 57.
    Drewe J, Gutmann H, Fricker G, Torok M, Beglinger C, Huwyler J. HIV protease inhibitor ritonavir: a more potent inhibitor of P-glycoprotein than the cyclosporine analog SDZ PSC 833. Biochem Pharmacol 1999;57:1147–1152.PubMedCrossRefGoogle Scholar
  58. 58.
    Huisman MT, Smit JW, Wiltshire HR, Hoetelmans RM, Beijnen JH, Schinkel AH. P-glycoprotein limits oral availability, brain, and fetal penetration of saquinavir even with high doses of ritonavir. Mol Pharmacol 2001;59:806–813.PubMedGoogle Scholar
  59. 59.
    Hochman JH, Chiba M, Yamazaki M, Tang C, Lin JH. P-glycoprotein-mediated efflux of indinavir metabolites in Caco-2 cells expressing cytochrome P450 3A4. J Pharmacol Exp Ther 2001;298:323–330.PubMedGoogle Scholar
  60. 60.
    Huisman MT, Smit JW, Crommentuyn KM, et al. Multidrug resistance protein 2 (MRP2) transports HIV protease inhibitors, and transport can be enhanced by other drugs. AIDS 2002;16:2295–2301.PubMedCrossRefGoogle Scholar
  61. 61.
    Soldner A, Christians U, Susanto M, Wacher VJ, Silverman JA, Benet LZ. Grapefruit juice activates P-glycoprotein-mediated drug transport. Pharm Res 1999;16: 478–485.PubMedCrossRefGoogle Scholar
  62. 62.
    Khaliq Y, Gallicano K, Venance S, Kravcik S, Cameron DW. Effect of ketoconazole on ritonavir and saquinavir concentrations in plasma and cerebrospinal fluid from patients infected with human immunodeficiency virus. Clin Pharmacol Ther 2000;68:637–646.PubMedCrossRefGoogle Scholar
  63. 63.
    Fellay J, Marzolini C, Meaden ER, et al. Swiss HIV Cohort Study. Response to antiretroviral treatment in HIV-1-infected individuals with allelic variants of the multidrug resistance transporter 1: a pharmacogenetics study. Lancet 2002;359: 30–36.PubMedCrossRefGoogle Scholar
  64. 64.
    Kilby JM, Eron JJ. Novel therapies based on mechanisms of HIV-1 cell entry. N Engl J Med 2003;348:2228–2238.PubMedCrossRefGoogle Scholar
  65. 65.
    Brockmeyer NH, Mertins L, Spatz D, Tillmann I, Goos M. Endogenous interferon plasma levels and antipyrine pharmacokinetics in patients with viral infections. Int J Clin Pharmacol Ther Toxicol 1992;30:530–533.PubMedGoogle Scholar
  66. 66.
    Israel BC, Blouin RA, McIntyre W, Shedlofsky SI. Effects of interferon-alpha monotherapy on hepatic drug metabolism in cancer patients. Br J Clin Pharmacol 1993;36:229–235.PubMedGoogle Scholar
  67. 67.
    Horsmans Y, Brenard R, Geubel AP. Short report: interferon-alpha decreases 14C-aminopyrine breath test values in patients with chronic hepatitis C. Aliment Pharmacol Ther 1994;8:353–355.PubMedCrossRefGoogle Scholar
  68. 68.
    Islam M, Frye RF, Richards TJ, et al. Differential effect of IFNalpha-2b on the cytochrome P450 enzyme system: a potential basis of IFN toxicity and its modulation by other drugs. Clin Cancer Res 2002;8:2480–2487.PubMedGoogle Scholar
  69. 69.
    Becquemont L, Chazouilleres O, Serfaty L, et al. Effect of interferon alpha-ribavirin bitherapy on cytochrome P450 1A2 and 2D6 and N-acetyltransferase-2 activities in patients with chronic active hepatitis C. Clin Pharmacol Ther 2002;71:488–495.PubMedCrossRefGoogle Scholar
  70. 70.
    Rivory LP, Slaviero KA, Clarke SJ. Hepatic cytochrome P450 3A drug metabolism is reduced in cancer patients who have an acute-phase response. Br J Cancer 2002; 87:277–280.PubMedCrossRefGoogle Scholar
  71. 71.
    Pageaux GP, le Bricquir Y, Berthou F, et al. Effects of interferon-alpha on cytochrome P-450 isoforms 1A2 and 3A activities in patients with chronic hepatitis C. Eur J Gastroenterol Hepatol 1998;10:491–495.PubMedCrossRefGoogle Scholar
  72. 72.
    Cribb AE, Delaporte E, Kim SG, Novak RF, Renton KW. Regulation of cytochrome P-4501A and cytochrome P-4502E induction in the rat during the production of interferon alpha/beta. J Pharmacol Exp Ther 1994;268:487–494.PubMedGoogle Scholar
  73. 73.
    Stanley LA, Adams DJ, Balkwill FR, Griffin D, Wolf CR. Differential effects of recombinant interferon alpha on constitutive and inducible cytochrome P450 isozymes in mouse liver. Biochem Pharmacol 1991;42:311–320.PubMedCrossRefGoogle Scholar
  74. 74.
    Carelli M, Porras MC, Rizzardini M, Cantoni L. Modulation of constitutive and inducible hepatic cytochrome(s) P-450 by interferon beta in mice. J Hepatol 1996; 24:230–237.PubMedCrossRefGoogle Scholar
  75. 75.
    Piscitelli SC, Gallicano KD. Interactions among drugs for HIV and opportunistic infections. N Engl J Med 2001;344:984–996.PubMedCrossRefGoogle Scholar
  76. 76.
    Furlan V, Taburet AM. Drug interactions with antiretroviral agents. Therapie 2001;56:267–271.PubMedGoogle Scholar
  77. 77.
    Washington CB, Flexner C, Sheiner LB, et al. AIDS Clinical Trials Group Protocol (ACTG 378) Study Team. Effect of simultaneous versus staggered dosing on pharmacokinetic interactions of protease inhibitors. Clin Pharmacol Ther 2003;73: 406–416.PubMedCrossRefGoogle Scholar
  78. 78.
    Cooper CL, van Heeswijk RP, Gallicano K, Cameron DW. A review of low-dose ritonavir in protease inhibitor combination therapy. Clin Infect Dis 2003;36:1585–1592.PubMedCrossRefGoogle Scholar
  79. 79.
    Pfister M, Labbe L, Lu JF, et al. AIDS Clinical Trial Group Protocol 398 Investigators. Effect of coadministration of nelfinavir, indinavir, and saquinavir on the pharmacokinetics of amprenavir. Clin Pharmacol Ther 2002;72:133–141.PubMedCrossRefGoogle Scholar
  80. 80.
    de Maat MM, Ekhart GC, Huitema AD, Koks CH, Mulder JW, Beijnen JH. Drug interactions between antiretroviral drugs and comedicated agents. Clin Pharmacokinet 2003;42:223–282.PubMedCrossRefGoogle Scholar
  81. 81.
    Hamzeh FM, Benson C, Gerber J, et al. AIDS Clinical Trials Group 365 Study Team. Steady-state pharmacokinetic interaction of modified-dose indinavir and rifabutin. Clin Pharmacol Ther 2003;73:159–169.PubMedCrossRefGoogle Scholar
  82. 82.
    Polk RE, Crouch MA, Israel DS, et al. Pharmacokinetic interaction between ketoconazole and amprenavir after single doses in healthy men. Pharmacotherapy 1999;19:1378–1384.PubMedCrossRefGoogle Scholar
  83. 83.
    Cato A, III, Cavanaugh J, Shi H, Hsu A, Leonard J, Granneman R. The effect of multiple doses of ritonavir on the pharmacokinetics of rifabutin. Clin Pharmacol Ther 1998;63:414–421.PubMedCrossRefGoogle Scholar
  84. 84.
    Greenblatt DJ, von Moltke LL, Harmatz JS, et al. Alprazolam-ritonavir interaction: implications for product labelling. Clin Pharmacol Ther 2000;67:335–341.PubMedCrossRefGoogle Scholar
  85. 85.
    Li AP, Reith MK, Rasmussen A, et al. Primary human hepatocytes as a tool for the evaluation of structure-activity relationship in cytochrome P450 induction potential of xenobiotics: evaluation of rifampin, rifapentine and rifabutin. Chem Biol Interact 1997;107:17–30.PubMedCrossRefGoogle Scholar
  86. 86.
    Gallicano KD, Sahai J, Shukla VK, et al. Induction of zidovudine glucuronidation and amination pathways by rifampicin in HIV-infected patients. Br J Clin Pharmacol 1999;48:168–179.PubMedCrossRefGoogle Scholar
  87. 87.
    Piscitelli SC, Burstein AH, Welden N, Gallicano KD, Falloon J. The effect of garlic supplements on the pharmacokinetics of saquinavir. Clin Infect Dis 2002;34: 234–238.PubMedCrossRefGoogle Scholar
  88. 88.
    Eagling VA, Profit L, Back DJ. Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-1 protease inhibitor saquinavir by grapefruit juice components. Br J Clin Pharmacol 1999;48:543–552.PubMedCrossRefGoogle Scholar
  89. 89.
    Kupferschmidt HH, Fattinger KE, Ha HR, Follath F, Krahenbuhl S. Grapefruit juice enhances the bioavailability of the HIV protease inhibitor saquinavir in man. Br J Clin Pharmacol 1998;45:355–359.PubMedCrossRefGoogle Scholar
  90. 90.
    Sahai J, Gallicano K, Oliveras L, Khaliq S, Hawley-Foss N, Garber G. Cations in the didanosine tablet reduce ciprofloxacin bioavailability. Clin Pharmacol Ther 1993;53:292–297.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Bernhard H. Lauterburg
    • 1
  1. 1.Department of Clinical PharmacologyUniversity of BernBernSwitzerland

Personalised recommendations