Advertisement

Methods and Approaches to Study Metabolism and Toxicity of Acetaminophen

  • Sam A. Bruschi
Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

Although acetaminophen (also known as paracetamol) is a relatively safe and freely available analgesic, frequent organ toxicity (primarily in the liver) and admissions to emergency rooms occur. The aim of this chapter is to indicate selectively the most promising areas of research into the mechanisms of action of this drug and to highlight briefly new methodologies that are likely to maximize chances of filling gaps in our knowledge. As many other therapeutic and environmental chemicals mediate cell death and tissue damage by similar mechanisms as acetaminophen (i.e., via “reactive metabolites”), it is likely that any new information with respect to the toxicological mechanisms of acetaminophen will be generally applicable. The chapter highlights the metabolic scheme for both activation and detoxification of acetaminophen; summarizes current knowledge on the intracellular sequelae after exposure; assesses the relative importance of protein modification, oxidative stress, and mitochondrial injury in the mechanism of action; discusses evidence for the role of chemokines and cytokines in the “extrinsic” phase of aceta-minophen-induced liver injury; assesses the role of nitric oxide and other reactive nitrogen species in injury; and discusses new approaches to studying liver injury, including the use of transgenic animals, RNA interference, DNA microarrays, and proteomic approaches.

Key Words

Acetaminophen acute liver failure acute tubular necrosis p-aminophenol apoptosis centrilobular necrosis chemokines cyclooxygenases cytochrome P450 CYP2E1 DNA microarrays glucuronidation mitochondria N-acetyl-p-benzoquinone imine N-acetylcysteine nitric oxide oxidative stress protein modifications small interfering RNA stress genes sulfation trans-genic/knockout mice 

References

  1. 1.
    Prescott LF. Paracetamol (Acetaminophen): A Critical Bibliographic Review. London: Taylor and Francis; 1996.Google Scholar
  2. 2.
    Bessems JG, Vermeulen NP. Paracetamol (acetaminophen)-induced toxicity: molecular and biochemical mechanisms, analogues and protective approaches. Crit Rev Toxicol 2001;31:55–138.PubMedCrossRefGoogle Scholar
  3. 3.
    Dargan PI, Jones AL. Management of paracetamol poisoning. Trends Pharmacol Sci 2003;24:154–157.PubMedCrossRefGoogle Scholar
  4. 4.
    Ostapowicz G, Fontana RJ, Schiodt FV, et al. Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. Ann Intern Med 2002;137:947–954.PubMedGoogle Scholar
  5. 5.
    Lee WM. Drug-induced hepatotoxicity. N Engl J Med 2003;349:474–485.PubMedCrossRefGoogle Scholar
  6. 6.
    Gow PJ, Smallwood RA, Angus PW. Paracetamol overdose in a liver transplantation centre: an 8-year experience. J Gastroenterol Hepatol 1999;14:817–821.PubMedCrossRefGoogle Scholar
  7. 7.
    Blakely P, McDonald BR. Acute renal failure due to acetaminophen ingestion: a case report and review of the literature. J Am Soc Nephrol 1995;6:48–53.PubMedGoogle Scholar
  8. 8.
    Mokhlesi B, Leikin JB, Murray P, Corbridge TC. Adult toxicology in critical care: Part II: specific poisonings. Chest 2003;123:897–922.PubMedCrossRefGoogle Scholar
  9. 9.
    Nelson SD, Bruschi SA. Mechanisms of acetaminophen-induced liver disease. In: Kaplowitz N, DeLeve LD, eds. Drug-Induced Liver Disease. New York and Basel: Marcel Dekker; 2002:287–325.Google Scholar
  10. 10.
    Lyons L, Studdiford JS, Sommaripa AM. Treatment of acetaminophen overdosage with N-acetylcysteine. N Engl J Med 1977;296:174–175.PubMedCrossRefGoogle Scholar
  11. 11.
    Piperno E, Berssenbruegge DA. Reversal of experimental paracetamol toxicosis with N-acetylcysteine. Lancet 1976;2(7988):738–739.PubMedCrossRefGoogle Scholar
  12. 12.
    James LP, Wells E, Beard RH, Farrar HC. Predictors of outcome after acetaminophen poisoning in children and adolescents. J Pediatr 2002;140: 522–526.PubMedCrossRefGoogle Scholar
  13. 13.
    Parkinson A. Biotransformation of xenobiotics. In: Klaassen CD, ed. Toxicology—The Basic Science of Poisons, 5th edit. New York: McGraw-Hill; 1996:113–186.Google Scholar
  14. 14.
    Prescott LF. Kinetics and metabolism of paracetamol and phenacetin. Br J Clin Pharmacol 1980;10(Suppl 2):291S–298S.PubMedGoogle Scholar
  15. 15.
    Fairbrother JE. Acetaminophen. New York and London: Academic Press; 1974.Google Scholar
  16. 16.
    Black M. Acetaminophen hepatotoxicity. Gastroenterology 1980;78:382–392.PubMedGoogle Scholar
  17. 17.
    Cohen SD, Khairallah EA. Selective protein arylation and acetaminophen-induced hepatotoxicity. Drug Metab Rev 1997;29:59–77.PubMedCrossRefGoogle Scholar
  18. 18.
    Hinson JA, Pohl LR, Monks TJ, Gillette JR. Acetaminophen-induced hepatotoxicity. Life Sci 1981;29:107–116.PubMedCrossRefGoogle Scholar
  19. 19.
    Nelson SD, Pearson PG. Covalent and noncovalent interactions in acute lethal cell injury caused by chemicals. Annu Rev Pharmacol Toxicol 1990;30:169–195.PubMedCrossRefGoogle Scholar
  20. 20.
    Burchell B, Brierley CH, Rance D. Specificity of human UDP-glucuronosyl-transferases and xenobiotic glucuronidation. Life Sci 1995;57:1819–1831.PubMedCrossRefGoogle Scholar
  21. 21.
    Blackledge HM, O’Farrell J, Minton NA, McLean AE. The effect of therapeutic doses of paracetamol on sulphur metabolism in man. Hum Exp Toxicol 1991;10: 159–165.PubMedCrossRefGoogle Scholar
  22. 22.
    Xiong H, Suzuki H, Sugiyama Y, Meier PJ, Pollack GM, Brouwer KL. Mechanisms of impaired biliary excretion of acetaminophen glucuronide after acute phenobarbital treatment or phenobarbital pretreatment. Drug Metab Dispos 2002;30:962–969.PubMedCrossRefGoogle Scholar
  23. 23.
    Xiong H, Turner KC, Ward ES, Jansen PL, Brouwer KL. Altered hepatobiliary disposition of acetaminophen glucuronide in isolated perfused livers from multidrug resistance-associated protein 2-deficient TR(―) rats. J Pharmacol Exp Ther 2000;295:512–518.PubMedGoogle Scholar
  24. 24.
    Silva VM, Chen C, Hennig GE, Whiteley HE, Manautou JE. Changes in susceptibility to acetaminophen-induced liver injury by the organic anion indocyanine green. Food Chem Toxicol 2001;39:271–278.PubMedCrossRefGoogle Scholar
  25. ai]25.
    Zimmerman HJ, Maddrey WC. Acetaminophen (paracetamol) hepatotoxicity with regular intake of alcohol: analysis of instances of therapeutic misadventure. Hepatology 1995;22:767–773.PubMedCrossRefGoogle Scholar
  26. 26.
    Thummel KE, Slattery JT, Ro H, Chien JY, Nelson SD, Lown KE, Watkins PB. Ethanol and production of the hepatotoxic metabolite of acetaminophen in healthy adults. Clin Pharmacol Ther 2000;67:591–599.PubMedCrossRefGoogle Scholar
  27. 27.
    Novak D, Lewis JH. Drug-induced liver disease. Curr Opin Gastroenterol 2003;19:203–215.PubMedCrossRefGoogle Scholar
  28. 28.
    Potter WZ, Davis DC, Mitchell JR, Jollow DJ, Gillette JR, Brodie BB. Acetaminophen-induced hepatic necrosis. 3. Cytochrome P-450-mediated covalent binding in vitro. J Pharmacol Exp Ther 1973;187:203–210.PubMedGoogle Scholar
  29. 29.
    Mitchell JR, Jollow DJ, Potter WZ, Davis DC, Gillette JR, Brodie BB. Aceta-minophen-induced hepatic necrosis. I. Role of drug metabolism. J Pharmacol Exp Ther 1973;187:185–194.PubMedGoogle Scholar
  30. 30.
    Jollow DJ, Mitchell JR, Potter WZ, Davis DC, Gillette JR, Brodie BB. Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo. J Pharmacol Exp Ther 1973;187:195–202.PubMedGoogle Scholar
  31. 31.
    Mitchell JR, Jollow DJ, Potter WZ, Gillette JR, Brodie BB. Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione. J Pharmacol Exp Ther 1973;187:211–217.PubMedGoogle Scholar
  32. 32.
    Corcoran GB, Mitchell JR, Vaishnav YN, Horning EC. Evidence that acetaminophen and N-hydroxyacetaminophen form a common arylating intermediate, N-acetyl-p-benzoquinoneimine. Mol Pharmacol 1980;18:536–542.PubMedGoogle Scholar
  33. 33.
    Dahlin DC, Nelson SD. Synthesis, decomposition kinetics, and preliminary toxicological studies of pure N-acetyl-p-benzoquinone imine, a proposed toxic metabolite of acetaminophen. J Med Chem 1982;25:885–886.PubMedCrossRefGoogle Scholar
  34. 34.
    Holme JA, Dahlin DC, Nelson SD, Dybing E. Cytotoxic effects of N-acetyl-p-benzoquinone imine, a common arylating intermediate of paracetamol and N-hydroxyparacetamol. Biochem Pharmacol 1984;33:401–406.PubMedCrossRefGoogle Scholar
  35. 35.
    Dahlin DC, Miwa GT, Lu AY, Nelson SD. N-Acetyl-p-benzoquinone imine: a cytochrome P-450-mediated oxidation product of acetaminophen. Proc Natl Acad Sci USA 1984;81:1327–1331.PubMedCrossRefGoogle Scholar
  36. 36.
    Streeter AJ, Dahlin DC, Nelson SD, Baillie TA. The covalent binding of acetaminophen to protein. Evidence for cysteine residues as major sites of arylation in vitro. Chem Biol Interact 1984;48:349–366.PubMedCrossRefGoogle Scholar
  37. 37.
    Qiu Y, Benet LZ, Burlingame AL. Identification of hepatic protein targets of the reactive metabolites of the noN-hepatotoxic regioisomer of acetaminophen, 3′-hydroxyacetanilide, in the mouse in vivo using two-dimensional gel electro-phoresis and mass spectrometry. Adv Exp Med Biol 2001;500:663–673.PubMedGoogle Scholar
  38. 38.
    Qiu Y, Benet LZ, Burlingame AL. Identification of the hepatic protein targets of reactive metabolites of acetaminophen in vivo in mice using two-dimensional gel electrophoresis and mass spectrometry. J Biol Chem 1998;273:17940–17953.PubMedCrossRefGoogle Scholar
  39. 39.
    Pumford NR, Martin BM, Hinson JA. A metabolite of acetaminophen covalently binds to the 56 kDa selenium binding protein. Biochem Biophys Res Commun 1992;182:1348–1355.PubMedCrossRefGoogle Scholar
  40. 40.
    Hoivik DJ, Manautou JE, Tveit A, Mankowski DC, Khairallah EA, Cohen SD. Evidence suggesting the 58-kDa acetaminophen binding protein is a preferential target for acetaminophen electrophile. Fundam Appl Toxicol 1996;32:79–86.PubMedCrossRefGoogle Scholar
  41. 41.
    Gibson JD, Pumford NR, Samokyszyn VM, Hinson JA. Mechanism of acetaminophen-induced hepatotoxicity: covalent binding versus oxidative stress. Chem Res Toxicol 1996;9:580–585.PubMedCrossRefGoogle Scholar
  42. 42.
    Cohen SD, Pumford NR, Khairallah EA, et al. Selective protein covalent binding and target organ toxicity. Toxicol Appl Pharmacol 1997;143:1–12.PubMedCrossRefGoogle Scholar
  43. 43.
    Adams ML, Pierce RH, Vail ME, et al. Enhanced acetaminophen hepatotoxicity in transgenic mice overexpressing bcl-2. Mol Pharmacol 2001;60:907–915.PubMedGoogle Scholar
  44. 44.
    Pierce RH, Franklin CC, Campbell JS, et al. Cell culture model for acetaminophen-induced hepatocyte death in vivo. Biochem Pharmacol 2002;64:413–424.PubMedCrossRefGoogle Scholar
  45. 45.
    Hoffmann KJ, Streeter AJ, Axworthy DB, Baillie TA. Identification of the major covalent adduct formed in vitro and in vivo between acetaminophen and mouse liver proteins. Mol Pharmacol 1985;27:566–573.PubMedGoogle Scholar
  46. 46.
    Hinson JA, Roberts DW, Benson RW, Dalhoff K, Loft S, Poulsen HE. Mechanism of paracetamol toxicity. Lancet 1990;335(8691):732.PubMedCrossRefGoogle Scholar
  47. 47.
    Tirmenstein MA, Nelson SD. Acetaminophen-induced oxidation of protein thiols. Contribution of impaired thiol-metabolizing enzymes and the breakdown of adenine nucleotides. J Biol Chem 1990;265:3059–3065.PubMedGoogle Scholar
  48. 48.
    Ruepp SU, Tonge RP, Shaw J, Wallis N, Pognan F. Genomics and proteomics analysis of acetaminophen toxicity in mouse liver. Toxicol Sci 2002;65:135–150.PubMedCrossRefGoogle Scholar
  49. 49.
    Groves CE, Lock EA, Schnellmann RG. Role of lipid peroxidation in renal proximal tubule cell death induced by haloalkene cysteine conjugates. Toxicol Appl Pharmacol 1991;107:54–62.PubMedCrossRefGoogle Scholar
  50. 50.
    James EA, Gygi SP, Adams ML, et al. Mitochondrial aconitase modification, functional inhibition, and evidence for a supramolecular complex of the TCA cycle by the renal toxicant S-(1,1,2,2-tetrafluoroethyl)-L-cysteine. Biochemistry 2002;41: 6789–6797.PubMedCrossRefGoogle Scholar
  51. 51.
    Suntres ZE. Role of antioxidants in paraquat toxicity. Toxicology 2002;180:65–77.PubMedCrossRefGoogle Scholar
  52. 52.
    Schanne FA, Kane AB, Young EE, Farber JL. Calcium dependence of toxic cell death: a final common pathway. Science 1979;206:700–702.PubMedCrossRefGoogle Scholar
  53. 53.
    Bruschi SA, Priestly B. Implications of alterations in intracellular calcium ion homeostasis in the advent of paracetamol-induced cytotoxicity in primary mouse hepatocyte cultures. Toxicol In Vitro 1990;4:743–749.PubMedCrossRefGoogle Scholar
  54. 54.
    Burcham PC, Harman AW. Mitochondrial dysfunction in paracetamol hepatotoxicity: in vitro studies in isolated mouse hepatocytes. Toxicol Lett 1990;50:37–48.PubMedCrossRefGoogle Scholar
  55. 55.
    Burcham PC, Harman AW. Acetaminophen toxicity results in site-specific mitochondrial damage in isolated mouse hepatocytes. J Biol Chem 1991;266: 5049–5054.PubMedGoogle Scholar
  56. 56.
    Tirmenstein MA, Nelson SD. Subcellular binding and effects on calcium homeostasis produced by acetaminophen and a nonhepatotoxic regioisomer, 3′-hydroxyacetanilide, in mouse liver. J Biol Chem 1989;264:9814–9819.PubMedGoogle Scholar
  57. 57.
    Tirmenstein MA, Nelson SD. Hepatotoxicity after 3′-hydroxyacetanilide administration to buthionine sulfoximine pretreated mice. Chem Res Toxicol 1991;4: 214–217.PubMedCrossRefGoogle Scholar
  58. 58.
    Coen M, Lenz EM, Nicholson JK, Wilson ID, Pognan F, Lindon JC. An integrated metabonomic investigation of acetaminophen toxicity in the mouse using NMR spectroscopy. Chem Res Toxicol 2003;16:295–303.PubMedCrossRefGoogle Scholar
  59. 59.
    Scorrano L, Oakes SA, Opferman JT, et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 2003;300:135–139.PubMedCrossRefGoogle Scholar
  60. 60.
    Nelson SD, Bruschi SA. Mechanisms of acetaminophen-induced liver disease. In: Kaplowitz N, DeLeve LD, eds. Drug-Induced Liver Disease. New York and Basel, Marcel Dekker, 2002.Google Scholar
  61. 61.
    Roberts SA, Price VF, Jollow DJ. Acetaminophen structure-toxicity studies: in vivo covalent binding of a nonhepatotoxic analog, 3-hydroxyacetanilide. Toxicol Appl Pharmacol 1990;105:195–208.PubMedCrossRefGoogle Scholar
  62. 62.
    Bailly-Maitre B, de Sousa G, Zucchini N, Gugenheim J, Boulukos KE, Rahmani R. Spontaneous apoptosis in primary cultures of human and rat hepatocytes: molecular mechanisms and regulation by dexamethasone. Cell Death Differ 2002;9: 945–955.PubMedCrossRefGoogle Scholar
  63. 63.
    Bailly-Maitre B, de Sousa G, Boulukos K, Gugenheim J, Rahmani R. Dexamethasone inhibits spontaneous apoptosis in primary cultures of human and rat hepatocytes via Bcl-2 and Bcl-xL induction. Cell Death Differ 2001;8:279–288.PubMedCrossRefGoogle Scholar
  64. 64.
    Frank S, Gaume B, BergmanN-Leitner ES, et al. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 2001;1:515–525.PubMedCrossRefGoogle Scholar
  65. 65.
    Karbowski M, Youle RJ. Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ 2003;10:870–880.PubMedCrossRefGoogle Scholar
  66. 66.
    Karbowski M, Lee YJ, Gaume B, et al. Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J Cell Biol 2002;159:931–938.PubMedCrossRefGoogle Scholar
  67. 67.
    Breckenridge DG, Stojanovic M, Marcellus RC, Shore GC. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J Cell Biol 2003; 160:1115–1127.PubMedCrossRefGoogle Scholar
  68. 68.
    Haouzi D, Cohen I, Vieira HL, et al. Mitochondrial permeability transition as a novel principle of hepatorenal toxicity in vivo. Apoptosis 2002;7:395–405.PubMedCrossRefGoogle Scholar
  69. 69.
    Ma Y, Hendershot LM. The unfolding tale of the unfolded protein response. Cell 2001;107:827–830.PubMedCrossRefGoogle Scholar
  70. 70.
    Kaufman RJ. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 1999;13:1211–1233.PubMedCrossRefGoogle Scholar
  71. 71.
    Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science 2000;290:1717–1721.PubMedCrossRefGoogle Scholar
  72. 72.
    Newmeyer DD, FergusoN-Miller S. Mitochondria: releasing power for life and unleashing the machineries of death. Cell 2003;112:481–490.PubMedCrossRefGoogle Scholar
  73. 73.
    Marchetti P, Castedo M, Susin SA, et al. Mitochondrial permeability transition is a central coordinating event of apoptosis. J Exp Med 1996;184:1155–1160.PubMedCrossRefGoogle Scholar
  74. 74.
    Wei MC, Zong WX, Cheng EH, et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 2001;292:727–730.PubMedCrossRefGoogle Scholar
  75. 75.
    Borner C. The Bcl-2 protein family: sensors and checkpoints for life-or-death decisions. Mol Immunol 2003;39:615–647.PubMedCrossRefGoogle Scholar
  76. 76.
    Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2002;2:647–656.PubMedCrossRefGoogle Scholar
  77. 77.
    Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev 1999;13:1899–1911.PubMedCrossRefGoogle Scholar
  78. 78.
    El-Hassan H, Anwar K, Macanas-Pirard P, et al. Involvement of mitochondria in acetaminophen-induced apoptosis and hepatic injury: roles of cytochrome c, Bax, Bid. and caspases. Toxicol Appl Pharmacol 2003;191:118–129.PubMedCrossRefGoogle Scholar
  79. 79.
    Guo B, Zhai D, Cabezas E, et al. Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature 2003;423:456–461.PubMedCrossRefGoogle Scholar
  80. 80.
    Chandrasekharan NV, Dai H, Roos KL, et al. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc Natl Acad Sci USA 2002;99:13926–13931.PubMedCrossRefGoogle Scholar
  81. 81.
    Reilly TP, Brady JN, Marchick MR, et al. A protective role for cyclooxygenase-2 in drug-induced liver injury in mice. Chem Res Toxicol 2001;14:1620–1628.PubMedCrossRefGoogle Scholar
  82. 82.
    Masubuchi Y, Bourdi M, Reilly TP, Graf ML, George JW, Pohl LR. Role of interleukin-6 in hepatic heat shock protein expression and protection against acetaminophen-induced liver disease. Biochem Biophys Res Commun 2003;304: 207–212.PubMedCrossRefGoogle Scholar
  83. 83.
    Chiu H, Gardner CR, Dambach DM, et al. Role of p55 tumor necrosis factor receptor 1 in acetaminophen-induced antioxidant defense. Am J Physiol 2003;285: G959–G966.Google Scholar
  84. 84.
    Gardner CR, Laskin JD, Dambach DM, et al. Reduced hepatotoxicity of acetaminophen in mice lacking inducible nitric oxide synthase: potential role of tumor necrosis factor-alpha and interleukin-10. Toxicol Appl Pharmacol 2002;184:27–36.PubMedCrossRefGoogle Scholar
  85. 85.
    Liu J, Li C, Waalkes MP, Myers P, Saavedra JE, Keefer LK. The nitric oxide donor, V-PYRRO/NO, protects against acetaminophen-induced hepatotoxicity in mice. Hepatology 2003;37:324–333.PubMedCrossRefGoogle Scholar
  86. 86.
    Ju C, Reilly TP, Bourdi M, et al. Protective role of Kupffer cells in acetaminopheninduced hepatic injury in mice. Chem Res Toxicol 2002;15:1504–1513.PubMedCrossRefGoogle Scholar
  87. 87.
    Dambach DM, Watson LM, Gray KR, Durham SK, Laskin DL. Role of CCR2 in macrophage migration into the liver during acetaminophen-induced hepatotoxicity in the mouse. Hepatology 2002;35:1093–1103.PubMedCrossRefGoogle Scholar
  88. 88.
    Hogaboam CM, Bone-Larson CL, Steinhauser ML, et al. Exaggerated hepatic injury due to acetaminophen challenge in mice lacking C-C chemokine receptor 2. Am J Pathol 2000;156:1245–1252.PubMedCrossRefGoogle Scholar
  89. 89.
    Michael SL, Mayeux PR, Bucci TJ, et al. Acetaminophen-induced hepatotoxicity in mice lacking inducible nitric oxide synthase activity. Nitric Oxide 2001;5:432–441.PubMedCrossRefGoogle Scholar
  90. 90.
    Gardner CR, Heck DE, Yang CS, et al. Role of nitric oxide in acetaminophen-induced hepatotoxicity in the rat. Hepatology 1998;27:748–754.PubMedCrossRefGoogle Scholar
  91. 91.
    Fiorucci S, Antonelli E, Mencarelli A, et al. A NO-releasing derivative of acetaminophen spares the liver by acting at several checkpoints in the Fas pathway. Br J Pharmacol 2002;135:589–599.PubMedCrossRefGoogle Scholar
  92. 92.
    Hinson JA, Bucci TJ, Irwin LK, Michael SL, Mayeux PR. Effect of inhibitors of nitric oxide synthase on acetaminophen-induced hepatotoxicity in mice. Nitric Oxide 2002;6:160–167.PubMedCrossRefGoogle Scholar
  93. 93.
    James LP, McCullough SS, Lamps LW, Hinson JA. Effect of N-acetylcysteine on acetaminophen toxicity in mice: relationship to reactive nitrogen and cytokine formation. Toxicol Sci 2003; 75:458–467.PubMedCrossRefGoogle Scholar
  94. 94.
    Hinson JA, Michael SL, Ault SG, Pumford NR. Western blot analysis for nitrotyrosine protein adducts in livers of saline-treated and acetaminophen-treated mice. Toxicol Sci 2000;53:467–473.PubMedCrossRefGoogle Scholar
  95. 95.
    Laskin DL, Laskin JD. Role of macrophages and inflammatory mediators in chemically induced toxicity. Toxicology 2001;160:111–118.PubMedCrossRefGoogle Scholar
  96. 96.
    Laskin DL, Pendino KJ. Macrophages and inflammatory mediators in tissue injury. Annu Rev Pharmacol Toxicol 1995;35:655–677.PubMedCrossRefGoogle Scholar
  97. 97.
    Goldin RD, Ratnayaka ID, Breach CS, Brown IN, Wickramasinghe SN. Role of macrophages in acetaminophen (paracetamol)-induced hepatotoxicity. J Pathol 1996;179:432–435.PubMedCrossRefGoogle Scholar
  98. 98.
    Michael SL, Pumford NR, Mayeux PR, Niesman MR, Hinson JA. Pretreatment of mice with macrophage inactivators decreases acetaminophen hepatotoxicity and the formation of reactive oxygen and nitrogen species. Hepatology 1999;30:186–195.PubMedCrossRefGoogle Scholar
  99. 99.
    Futter LE, al-Swayeh OA, Moore PK. A comparison of the effect of nitroparacetamol and paracetamol on liver injury. Br J Pharmacol 2001;132:10–12.PubMedCrossRefGoogle Scholar
  100. 100.
    Keeble JE, Moore PK. Pharmacology and potential therapeutic applications of nitric oxide-releasing noN-steroidal anti-inflammatory and related nitric oxide-donating drugs. Br J Pharmacol 2002;137:295–310.PubMedCrossRefGoogle Scholar
  101. 101.
    al-Swayeh OA, Futter LE, Clifford RH, Moore PK. Nitroparacetamol exhibits anti-inflammatory and anti-nociceptive activity. Br J Pharmacol 2000;130:1453–1456.PubMedCrossRefGoogle Scholar
  102. 102.
    Knight TR, Kurtz A, Bajt ML, Hinson JA, Jaeschke H. Vascular and hepatocellular peroxynitrite formation during acetaminophen toxicity: role of mitochondrial oxidant stress. Toxicol Sci 2001;62:212–220.PubMedCrossRefGoogle Scholar
  103. 103.
    Bourdi M, Masubuchi Y, Reilly TP, et al. Protection against acetaminophen-induced liver injury and lethality by interleukin 10: role of inducible nitric oxide synthase. Hepatology 2002;35:289–298.PubMedCrossRefGoogle Scholar
  104. 104.
    Knight TR, Ho Y-S, Farwood A, Jaeschke H. Peroxynitrite is a critical mediator of acetaminophen hepatotoxicity in murine livers: protection. J Pharmacol Exp Ther 2002;303:468–475.PubMedCrossRefGoogle Scholar
  105. 105.
    Saavedra JE, Billiar TR, Williams DL, Kim YM, Watkins SC, Keefer LK. Targeting nitric oxide (NO) delivery in vivo. Design of a liver-selective NO donor prodrug that blocks tumor necrosis factor-α-induced apoptosis and toxicity in the liver. J Med Chem 1997;40:1947–1954.PubMedCrossRefGoogle Scholar
  106. 106.
    Zhang H, Cook J, Nickel J, et al. Reduction of liver Fas expression by an antisense oligonucleotide protects mice from fulminant hepatitis. Nat Biotechnol 2000;18:862–867.PubMedCrossRefGoogle Scholar
  107. 107.
    Jaeschke H, Knight TR, Bajt ML. The role of oxidant stress and reactive species in acetaminophen hepatotoxicity. Toxicol Lett 2003;144:279–288.PubMedCrossRefGoogle Scholar
  108. 108.
    Lawson JA, Fisher MA, Simmons CA, Farhood A, Jaeschke H. Inhibition of Fas receptor (CD95)-induced hepatic caspase activation and apoptosis by acetaminophen in mice. Toxicol Appl Pharmacol 1999;156:179–186.PubMedCrossRefGoogle Scholar
  109. 109.
    Karin M, Lin A. NF-κB at the crossroads of life and death. Nat Immunol 2002;3:221–227.PubMedCrossRefGoogle Scholar
  110. 110.
    Taylor BS, Alarcon LH, Billiar TR. Inducible nitric oxide synthase in the liver: regulation and function. Biochemistry (Moscow) 1998;63:766–781.Google Scholar
  111. 111.
    Ghosh S, Karin M. Missing pieces in the NF-κB puzzle. Cell 2002;109(Suppl): S81–S96.PubMedCrossRefGoogle Scholar
  112. 112.
    Boulares AH, Giardina C, Inan MS, Khairallah EA, Cohen SD. Acetaminophen inhibits NF-κB activation by interfering with the oxidant signal in murine Hepa 1–6 cells. Toxicol Sci 2000;55:370–375.PubMedCrossRefGoogle Scholar
  113. 113.
    Shankar K, Vaidya VS, Corton JC, et al. Activation of PPAR-α in streptozotocin-induced diabetes is essential for resistance against acetaminophen toxicity. FASEB J 2003;17:1748–1750.PubMedGoogle Scholar
  114. 114.
    Blazka ME, Germolec DR, Simeonova P, Bruccoleri A, Pennypacker KR, Luster MI. Acetaminophen-induced hepatotoxicity is associated with early changes in NF-κB and NF-IL6 DNA binding activity. J Inflamm 1995;47:138–150.PubMedGoogle Scholar
  115. 115.
    Zaher H, Buters JT, Ward JM, et al. Protection against acetaminophen toxicity in CYP1A2 and CYP2E1 double-null mice. Toxicol Appl Pharmacol 1998;152: 193–199.PubMedCrossRefGoogle Scholar
  116. 116.
    Tonge RP, Kelly EJ, Bruschi SA, et al. Role of CYP1A2 in the hepatotoxicity of acetaminophen: investigations using Cypla2 null mice. Toxicol Appl Pharmacol 1998;153:102–108.PubMedCrossRefGoogle Scholar
  117. 117.
    Lee SS, Buters JT, Pineau T, Fernandez-Salguero P, Gonzalez FJ. Role of CYP2E1 in the hepatotoxicity of acetaminophen. J Biol Chem 1996;271:12063–12067.PubMedCrossRefGoogle Scholar
  118. 118.
    Zhang J, Huang W, Chua SS, Wei P, Moore DD. Modulation of acetaminophen-induced hepatotoxicity by the xenobiotic receptor CAR. Science 2002;298: 422–424.PubMedCrossRefGoogle Scholar
  119. 119.
    Gonzalez FJ, Kimura S. Study of P450 function using gene knockout and transgenic mice. Arch Biochem Biophys 2003;409:153–158.PubMedCrossRefGoogle Scholar
  120. 120.
    Wei P, Zhang J, EgaN-Hafley M, Liang S, Moore DD. The nuclear receptor CAR mediates specific xenobiotic induction of drug metabolism. Nature 2000;407: 920–923.PubMedCrossRefGoogle Scholar
  121. 121.
    Gerbal-Chaloin S, Daujat M, Pascussi JM, Pichard-Garcia L, Vilarem MJ, Maurel P. Transcriptional regulation of CYP2C9 gene. Role of glucocorticoid receptor and constitutive androstane receptor. J Biol Chem 2002;277:209–217.PubMedCrossRefGoogle Scholar
  122. 122.
    Rosenfeld JM, Vargas R, Xie W, Evans RM. Genetic profiling defines the xenobiotic gene network controlled by the nuclear receptor pregnane X receptor. Mol Endocrinol 2003;17:1268–1282.PubMedCrossRefGoogle Scholar
  123. 123.
    Maglich JM, Parks DJ, Moore LB, et al. Identification of a novel human constitutive androstane receptor (CAR) agonist and its use in the identification of CAR target genes. J Biol Chem 2003;278:17277–17283.PubMedCrossRefGoogle Scholar
  124. 124.
    Moore LB, Parks DJ, Jones SA, et al. Orphan nuclear receptors constitutive androstane receptor and pregnane X receptor share xenobiotic and steroid ligands. J Biol Chem 2000;275:15122–15127.PubMedCrossRefGoogle Scholar
  125. 125.
    Moore JT, Moore LB, Maglich JM, Kliewer SA. Functional and structural comparison of PXR and CAR. Biochim Biophys Acta 2003;1619:235–238.PubMedGoogle Scholar
  126. 126.
    Forman BM, Tzameli I, Choi H-S, et al. Androstane metabolites bind to and deactivate the nuclear receptor CAR-β. Nature 1998;395:612–615.PubMedCrossRefGoogle Scholar
  127. 127.
    Nicholls-Grzemski FA, Calder IC, Priestly BG. Peroxisome proliferators protect against paracetamol hepatotoxicity in mice. Biochem Pharmacol 1992;43: 1395–1396.PubMedCrossRefGoogle Scholar
  128. 128.
    Manautou JE, Emeigh Hart SG, Khairallah EA, Cohen SD. Protection against acetaminophen hepatotoxicity by a single dose of clofibrate: effects on selective protein arylation and glutathione depletion. Fundam Appl Toxicol 1996;29:229–237.PubMedCrossRefGoogle Scholar
  129. 129.
    Chen C, Hennig GE, Whiteley HE, Corton JC, Manautou JE. Peroxisome proliferator-activated receptor α-null mice lack resistance to acetaminophen hepato-toxicity following clofibrate exposure. Toxicol Sci 2000;57:338–344.PubMedCrossRefGoogle Scholar
  130. 130.
    Henderson CJ, Wolf CR, Kitteringham N, Powell H, Otto D, Park BK. Increased resistance to acetaminophen hepatotoxicity in mice lacking glutathione S-transferase Pi. Proc Natl Acad Sci USA 2000;97:12741–12745.PubMedCrossRefGoogle Scholar
  131. 131.
    Mirochnitchenko O, Weisbrot-Lefkowitz M, Reuhl K, Chen L, Yang C, Inouye M. Acetaminophen toxicity. Opposite effects of two forms of glutathione peroxidase. J Biol Chem 1999;274:10349–10355.PubMedCrossRefGoogle Scholar
  132. 132.
    Bartolone JB, Birge RB, Bulera SJ, et al. Purification, antibody production, and partial amino acid sequence of the 58-kDa acetaminophen-binding liver proteins. Toxicol Appl Pharmacol 1992;113:19–29.PubMedCrossRefGoogle Scholar
  133. 133.
    Porat A, Sagiv Y, Elazar Z. A 56-kDa selenium-binding protein participates in intra-Golgi protein transport. J Biol Chem 2000;275:14457–14465.PubMedCrossRefGoogle Scholar
  134. 134.
    Elsby R, Kitteringham NR, Goldring CE, et al. Increased constitutive c-Jun N-terminal kinase signaling in mice lacking glutathione S-transferase Pi. J Biol Chem 2003;278:22243–22249.PubMedCrossRefGoogle Scholar
  135. 135.
    Wolf CR. The Gerhard Zbinden memorial lecture: application of biochemical and genetic approaches to understanding pathways of chemical toxicity. Toxicol Lett 2002;127:3–17.PubMedCrossRefGoogle Scholar
  136. 136.
    Chen YR, Wang X, Templeton D, Davis RJ, Tan TH. The role of c-Jun N-terminal kinase (JNK) in apoptosis induced by ultraviolet C and gamma radiation. Duration of JNK activation may determine cell death and proliferation. J Biol Chem 1996;271:31929–31936.PubMedCrossRefGoogle Scholar
  137. 137.
    Tournier C, Hess P, Yang DD, et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 2000;288:870–874.PubMedCrossRefGoogle Scholar
  138. 138.
    Huang S, Shu L, Dilling MB, Easton J, Harwood FC, Ichijo H, Houghton PJ. Sustained activation of the JNK cascade and rapamycin-induced apoptosis are suppressed by p53/p21(Cip1). Mol Cell 2003;11:1491–1501.PubMedCrossRefGoogle Scholar
  139. 139.
    Rzucidlo SJ, Bounous DI, Jones DP, Brackett BG. Acute acetaminophen toxicity in transgenic mice with elevated hepatic glutathione. Vet Hum Toxicol 2000;42: 146–150.PubMedGoogle Scholar
  140. 140.
    Tuschl T. Expanding small RNA interference. Nat Biotechnol 2002;20:446–448.PubMedCrossRefGoogle Scholar
  141. 141.
    Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001;411:494–498.PubMedCrossRefGoogle Scholar
  142. 142.
    Caplen NJ, Parrish S, Imani F, Fire A, Morgan RA. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci USA 2001;98:9742–9747.PubMedCrossRefGoogle Scholar
  143. 143.
    Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science 2002;296:550–553.PubMedCrossRefGoogle Scholar
  144. 144.
    Yu JY, DeRuiter SL, Turner DL. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci USA 2002;99:6047–6052.PubMedCrossRefGoogle Scholar
  145. 145.
    Zender L, Hutker S, Liedtke C, et al. Caspase 8 small interfering RNA prevents acute liver failure in mice. Proc Natl Acad Sci USA 2003;100:7797–7802.PubMedCrossRefGoogle Scholar
  146. 146.
    Ulrich R, Friend SH. Toxicogenomics and drug discovery: will new technologies help us produce better drugs? Nat Rev Drug Disc 2002;1:84–88.CrossRefGoogle Scholar
  147. 147.
    Reilly TP, Bourdi M, Brady JN, et al. Expression profiling of acetaminophen liver toxicity in mice using microarray technology. Biochem Biophys Res Commun 2001;282:321–328.PubMedCrossRefGoogle Scholar
  148. 148.
    De Longueville F, Atienzar FA, Marcq L, et al. Use of a low-density microarray for studying gene expression patterns induced by hepatotoxicants on primary cultures of rat hepatocytes. Toxicol Sci 2003;75:378–392.PubMedCrossRefGoogle Scholar
  149. 149.
    Cunningham MJ, Liang S, Fuhrman S, Seilhamer JJ, Somogyi R. Gene expression microarray data analysis for toxicology profiling. Ann NY Acad Sci 2000;919: 52–67.PubMedCrossRefGoogle Scholar
  150. 150.
    Gore MA, Morshedi MM, Reidhaar-Olson JF. Gene expression changes associated with cytotoxicity identified using cDNA arrays. Funct Integr Genomics 2000;1: 114–126.PubMedCrossRefGoogle Scholar
  151. 151.
    El-Hassan H, Anwar K, Macanas-Pirard P, et al. Involvement of mitochondria in acetaminophen-induced apoptosis and hepatic injury. Roles of cytochrome c, Bax, Bid, and caspases. Toxicol Appl Pharmacol 2003;191:118–129.PubMedCrossRefGoogle Scholar
  152. 152.
    Dietze EC, Schafer A, Omichinski JG, Nelson SD. Inactivation of glyceraldehyde-3-phosphate dehydrogenase by a reactive metabolite of acetaminophen and mass spectral characterization of an arylated active site peptide. Chem Res Toxi-col 1997;10:1097–1103.CrossRefGoogle Scholar
  153. 153.
    Myers TG, Dietz EC, Anderson NL, Khairallah EA, Cohen SD, Nelson SD. A comparative study of mouse liver proteins arylated by reactive metabolites of acetaminophen and its nonhepatotoxic regioisomer, 3′-hydroxyacetanilide. Chem Res Toxicol 1995;8:403–413.PubMedCrossRefGoogle Scholar
  154. 154.
    Fountoulakis M, Berndt P, Boelsterli UA, et al. Two-dimensional database of mouse liver proteins: changes in hepatic protein levels following treatment with acetaminophen or its nontoxic regioisomer 3-acetamidophenol. Electrophoresis 2000;21:2148–2161.PubMedCrossRefGoogle Scholar
  155. 155.
    Qiu Y, Benet LZ, Burlingame AL. Identification of hepatic protein targets of the reactive metabolites of the noN-hepatotoxic regioisomer of acetaminophen, 3′-hydroxyacetanilide, in the mouse in vivo using two-dimensional gel electrophoresis and mass spectrometry. Adv Exp Med Biol 2001;500:663–673.PubMedGoogle Scholar
  156. 156.
    Kitteringham NR, Powell H, Jenkins RE, et al. Protein expression profiling of glutathione S-transferase pi null mice as a strategy to identify potential markers of resistance to paracetamol-induced toxicity in the liver. Proteomics 2003;3: 191–207.PubMedCrossRefGoogle Scholar
  157. 157.
    Patterson SD, Aebersold RH. Proteomics: the first decade and beyond. Nat Genet 2003;33(Suppl):311–323.PubMedCrossRefGoogle Scholar
  158. 158.
    Smolka MB, Zhou H, Purkayastha S, Aebersold R. Optimization of the isotopecoded affinity tag-labeling procedure for quantitative proteome analysis. Anal Biochem 2001;297:25–31.PubMedCrossRefGoogle Scholar
  159. 159.
    Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 1999;17:994–999.PubMedCrossRefGoogle Scholar
  160. 160.
    Ku NO, Michie SA, Soetikno RM, et al. Susceptibility to hepatotoxicity in transgenic mice that express a dominant-negative human keratin 18 mutant. J Clin Invest 1996;98:1034–1046.PubMedCrossRefGoogle Scholar
  161. 161.
    Liu J, Liu Y, Hartley D, Klaassen CD, Shehin-Johnson SE, Lucas A, Cohen SD. Metallothionein-I/II knockout mice are sensitive to acetaminophen-induced hepatotoxicity. J Pharmacol Exp Ther 1999;289:580–586.PubMedGoogle Scholar
  162. 162.
    Rofe AM, Barry EF, Shelton TL, Philcox JC, Coyle P. Paracetamol hepatotoxicity in metallothionein-null mice. Toxicology 1998;125:131–140.PubMedCrossRefGoogle Scholar
  163. 163.
    Enomoto A, Itoh K, Nagayoshi E, et al. High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of ARE-regulated drug metabolizing enzymes and antioxidant genes. Toxicol Sci 2001;59: 169–177.PubMedCrossRefGoogle Scholar
  164. 164.
    Lee JM, Calkins MJ, Chan K, Kan YW, Johnson JA. Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. J Biol Chem 2003;278:12029–12038.PubMedCrossRefGoogle Scholar
  165. 165.
    Bourdi M, Reilly TP, Elkahloun AG, George JW, Pohl LR. Macrophage migration inhibitory factor in drug-induced liver injury: a role in susceptibility and stress responsiveness. Biochem Biophys Res Commun 2002;294:225–230.PubMedCrossRefGoogle Scholar
  166. 166.
    Boess F, Bopst M, Althaus R, et al. Acetaminophen hepatotoxicity in tumor necrosis factor/lymphotoxin-alpha gene knockout mice. Hepatology 1998;27:1021–1029.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Sam A. Bruschi
    • 1
  1. 1.Department of Medicinal ChemistryUniversity of WashingtonSeattle

Personalised recommendations